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About this book

There are many books on MatLab, and even more on programming and on computing. But

few - if any - take a procedural approach to the subject. This text attempts to do just that.

Programming texts tend to follow a traditional approach. You learn how to print Hello World.

From there you learn to calculate, followed by selection, repetition, arrays, and then finally

functions. Some books may include recursion, but if they do it is near the end if not the last

topic in the text.

MatLab texts consistently take a different approach. Since MatLab is a matrix centered

language - after all, MatLab is short for Matrix Laboratory - it starts with matrices and how to

use them to solve engineering problems. They tend to avoid the more traditional topics in

programming until later, and then only as to how they support matrix operations.

This approach is paradoxical. While the student learns to use MatLab they might not receive

the exposure to the traditional programming topics that they would in a course taught in

Python, or C++. This is fine if the goal of the course is to prepare them to apply MatLab

to specific problems in future engineering classes. But engineering students eventually

graduate and move on to industry or graduate school. Again, not a problem if, as an engineer,

they never need to code in a language other than MatLab. But the chance of that in today’s

technological world is slim.

This book bridges that gap between the traditional programming course and the MatLab

course. Its goal is to introduce programming to an audience of engineers or engineering

students with no prior experience in the topic. This approach starts with the traditional

concepts of single value variables - or in the MatLab case, scalars - and then proceeds with

the common programming structures.

Programming pedagogy has always been variables, selection, repetition, functions or

procedures, and - if time permits - classes and objects. The problem with this approach is

that while we start calling functions from the beginning - trig functions, logarithms, square

roots - we do not learn about writing functions till near the end of the course. But functions

are what make programming plug and play. Once there is a basic understanding of functions

the student can start reusing code in multiple programs. It quickly becomes obvious that

much of programming is repetition of what they have done before. To take advantage of

this, procedural programming is not put off till the end, but in this approach it is the second

topic of the text coming right after variables and assignments.

Once the foundation of functions is laid the course moves onto selection, and since they

already have exposure to functions, recursion - another change from tradition. Why recursion

and why before repetition? Recursion is rarely taught in beginning program classes. But

recursion is natural. It is how the world actually operates. With the basics of writing functions

already done it is a natural progression to recursion.



From recursion the book proceeds to repetition structures - while loops - and, with the for

loop, the first look at lists, vectors, arrays, and matrices. This leads into to the traditional

MatLab topics vectors, matrices, and solving simultaneous equations.

In a normal semester the first chapter is assigned to the students as a reading to provide

some history, and programming actually starts in chapter 2. The goal of this text is not just

learning to program but understanding computation and computing. This is the emphasis

of the second chapter. It discusses computing, algorithms, flow charting, and algorithmic

complexity - another topic rarely mentioned in an introductory course. Complexity provides

a look at reality. While an algorithm can be developed and a program written, can the

program actually run to completion in an amount of time so that a usable solution can be

found?

Flow charts are another topic that while presented in the past has been dropped in most

modern programming texts. In this book we bring it back. They provide an excellent visual

representation of many of the concepts, and are thus used throughout the book.

My thanks go to all of the students who have already used this book, providing suggestions

and identifying errors. I am hopeful that those who use it in the future will continue to do

so with that same critical eye.

Joseph Brian Adams, Ph.D., PE
11 May 2021



Introduction to Computing
and Computer Science 1
Computers have been around for thou-
sands of years. They just did not have all
of the cool flashing lights.

Computer Science encompasses nearly every facet of our lives.

But as engineers our vocational interest in computer science

tends to be more narrow. While we may be interested in

designing a more powerful computer, or a more efficient

computer, or a more practical computer, it is more likely that

we are interested in the computer as a tool; a means of

completing a computational task in the most efficient means

possible. In this case our interest is not in the computer, but

in computing.

1.1 Computing
Computing
Computing is the process of turning

data into information.
Any elementary school students can provide you with a

definition of computing; it is adding and subtracting. The

high school student would tell you that it is using a computer.

And the engineer is likely to return to the arithmetic

definition. While these are all true, their definitions are too

narrow. We are going to use a more general definition of

computing. Computing is the process of turning data into

information.

Figure 1.1: The Aztec Quipu was

a system of strings and knots that

were used to store numerical infor-

mation.

With a definition of computing we can now define a

computer. A computer is a tool for computing. A circular

definition but it describes the process of using a tool to turn

data into information.

This definition is important in part for what it omits. It does

not provide any indication or specifics. The computer does

not have to be digital or even mechanical. It can be static or

dynamic. As long as we can use the tool to turn data into

information it is a computer. With this definition of

computing we can see that computation has been around for

thousands of years.

It should be obvious that the first computers were ourselves.

We counted on our fingers and toes. According to

archaeologists the idea of counting goes back over fifty
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thousand yearsIf the counts exceeded ten or twenty the

ancients learned to make marks or cut notches in sticks.

The term computer actually comes from this. Before

mechanical computers, when large scale computation was

needed people were hired to do the calculations by hand.

This began in the nineteenth century when the Harvard

Observatory needed people to perform tedious arithmetic

calculations. Those hired were primarily women who were

degreed mathematicians. This continued into the twentieth

century and had become famous with its depiction at NASA

in the 2016 film Hidden Figures. The job title of these women

was computer and the term stuck.

And after we counted if we needed to store the resulting

information we put pebbles in a pot or made knots in a string

(figure 1.1). Later, we created ledgers and made notations in

those ledgers. These were simple mechanical means of

performing calculations and storing the results.

1.2 Measurement
Cubit
The cubit was an ancient unit of

length that was based roughly on

the length of the forearm from the

extended middle finger to the el-

bow. While considered a standard

its length varied between cultures.

As humanity progressed so did our demands for accuracy

and precision. These demands drove innovation in

computing. An early innovation came about as a result of

mankind’s desire for accurate and repeatable measurements.

Early construction was accomplished using measurements

based upon the craftsman’s body parts; the width of a hand,

or the length of the foot. This lead to the the cubit - the length

of the forearm from the extended middle finger to the elbow.

While considered a standardized measurement of

approximately 500 mm, it varied by as much as ten percent

between different cultures.Accuracy or Precision
While often taken as a synonyms,

accuracy and precision are differ-

ent. Accuracy is an indication of

how close a measure - or the aver-

age of many measurements - are

to the actual value. Precision is a

measure of how close the multiple

measurements are to each other.

These measurement tools lacked precision. One carpenter’s

foot was significantly different from another’s. Even a skilled

craftsman would be inconsistent from one measurement to

the next. As a result one of the oldest, simplest, and possibly

useful computer was invented - the ruler. A ruler provided a

means of precision in measuring linear distances. Rulers also

resolved the problem of accuracy in measurements. As far as

Five thousand years ago rulers in use were accurate to within

a sixteenth of an inch.
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Of course the computer that we call the ruler - even a

homemade ruler - was fine for precision linear

measurements. But the ancients were fascinated with angles

as well. An ability to measure an angle would open up their

study of the movement of the earth, the planets, and the stars.

Thus the next computer was created - the protractor. The

protractor made it possible to measure distances along an arc.

They could then measure movements of planets and stars.

Figure 1.2: Design of a sundial

using the angular position of the

shadow cast by the gnoman to in-

dicate solar time.

Combining the protractor with a stick and early people

created the first chronograph - a sundial. The sundial is a

computer that turns the position of the sun into the time of

day. Computers had gone from devices that made static

measurements to a device that was dynamic in that it

provided updates automatically as the day progressed.

1.3 Chronometry

Sundials were not only time pieces. They were also calendars

in that the length of the shadow formed changed throughout

the year. By using a ruler and a protractor the ancients turned

a clock into a means of computing the time of year and also

the position of the sun and thus the angle that the earth

made with the sun.

Early astronomers made use of protractors as computers that

can measure the positions of the stars and the movement of

the planets. And while their sextants may not have been

mechanical, the data that they collected was used in what is

considered to be the first mechanical computer - the

Antikythera Mechanism.

1.4 Mechanical Computers

The static computers developed in antiquity were meant as

measuring devices, but they were in their own way

computers. They turned data in to information. But the

industrial revolution brought about increasing demands for

data collection and analysis.

Antikythera Mechanism

The Antikythera Mechanism is a clockwork mechanism that

through the use of gears will show the position of the moon,
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sun, and planets. It was discovered in 1900 in the wreck of a

Roman galley that sank about 70 BCE. It is thought to have

been invented by the Greek engineer Archimedes, and is now

considered to be history’s first mechanical computer (figure:

1.3).

Figure 1.3: The Antikythera Mech-

anism often credited as being his-

tory’s first mechanical computer

These first computers provided their users with a means of

measuring distances, locations, and time. They were also

storage devices in that they were developed to model the

known universe. But they did not compute - at least not in

the sense of performing various mathematical calculations of

which we think when we discuss computing.

Babbage’s Analytical Engine

While the techniques and devices discussed are all

computers, we are interested in computers that provide

computational assistance; that is that can perform

calculations for us. This type of computing machine is widely

attributed to Charles Babbage, a Cambridge mathematician

in the early nineteenth century (figure: 1.4).

Babbage, in 1812, developed the concept of what he called the

difference engine; a mechanical machine that he hoped could

be used to solve polynomial equations. He developed a

working prototype of his difference engine in 1822, but

dropped the project to pursue what was to become the first

modern mechanical computer - his analytical engine.

Figure 1.4: Charles Babbage (1791

– 1871) and Ada Byron King -

Countess of Lovelace (1815 – 1852),

Charles Babbage was a Cambridge

mathematician credited with de-

signing the first mechanical com-

puter capable of performing calcu-

lations. Ada Lovelace worked with

Babbage on the analytical engine.

She is often credited as being the

first computer programmer

Charles Babbage Ada Byron King

Countess of Lovelace

Another mathematician, Ada Lovelace worked closely with

Babbage on the analytical engine. While not given the credit

that Babbage received, Lovelace was instrumental in working
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on the algorithmic processes for the device. As such she is

often credited as being the first computer programmer.

For the next hundred years the precursor to the modern

computer was mechanization. Typewriters and adding

machines were developed to support the industrial

revolution. Henry Ford used automation to mass produce

automobiles. The mechanical devices created to support the

industrial revolution are not commonly thought of as

computers, but in their own way they are.

World conflict brought further advances in computing. World

Wars I and II brought with them the onset of aviation

mechanical devices were developed that optimized how

airplanes could be used in combat.

Synchronization Gear

Figure 1.5: French patent drawing

for a synchronization gear.

Early in 1914 it became clear that a pilot risked catastrophe

when firing a weapon from a moving airplane. If handheld

the bullets could impact the pilot’s own airplane. If mounted

on the airplane it had to be aimed by the pointing the aircraft

into the direction of the target. When mounted directly in

front of the pilot the bullets could strike the propellor.

Engineers designed a mechanical computer called a

synchronization gear - more commonly called the interruptor -

that could determine when he propellor was within the

weapon’s line of fire. At that point in the rotation it would

disable the firing mechanism (figure: 1.5).

Figure 1.6: US patent drawing for

the Enigma encryption device.

While still mechanical, the interruptor meets our definition of

a computer. It collected data - the arc position of the propellor

- and processed it into actionable information - a decision as

to whether or not the weapon would be able to fire.

The innovation in mechanical computers brought about by

the First World War pales when compared to the Second

World War.

Enigma Machine

During the 1920s and 30s work had started on the

development of advanced means for encrypting text.

Generally known as enigma, these mechanical computing

devices used a series of rotating gears and plug connectors to

encrypt text. It functioned on the idea that if the number of

setting permutations are large then the chance of an enemy

being able to crack the cypher was very low. While the

enigma machine is commonly thought of as a German device,
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a United States patent was issued for an early enigma

machine in 1928 (figure: 1.6).

Differential Analyzer

Figure 1.7: Integrator wheel for the

differential analyzer.

Mechanical computers were also developed to provide

specific analyses for the war effort. In the First World War, the

brand new airplane would fly at fifty knots with a maximum

ceiling of several thousand feet. As the Second World War

began airplanes were flying at three hundred knots and at

altitudes above twenty thousand feet. A flyer could no longer

simply point the plane at the target.

To resolve the issue engineers designed a mechanical

computer called the differential analyzer. Its purpose was to

solve differential equations. When first designed and

implemented in the 1930𝑠 it was used to calculate tide tables.

With the advent of the second world war it was adapted to

calculate artillery trajectories.

The design of the differential analyzer was not new. It was

first described in 1876. This early version was meant to

perform integration, but as it proceeded it became a device to

solve differential equations. It functioned by using a wheel

and disk mechanism. The disk would undergo both a

rotation and translation. As it rotated a wheel whose edge

rested against the disk would turn. It was the rotation of this

wheel that represented the output of the integrator.

Figure 1.8: Patent application for

Fleming’s valve.

The output would be a table. These tables were created by a

pen drawing a curve on paper. These curves depicted the

functional solution of the differential equation.

1.5 Electronic Computers

As the second world war came to an end, advances in

electronics, beginning with Fleming’s valve, the first vacuum

tube, made way for the development of electronic computers.

The vacuum tube provided a means of controlling the flow of

current through an electronic circuit. With it, electronic

devices proliferated. Sound and visual transmission through

radios, telephone, and later television became common.

More directed to our interests, the vacuum tube and its

advances in electronics brought with it electronic computing.
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ENIAC

The first of these was the Electronic Numerical Integrator and

Computer or ENIAC. Designed and built at the University of

Pennsylvania. It was completed and began operation in

December, 1945 and later dedicated on February 15, 1946.

With 20,000 vacuum tubes it could perform a thousand times

faster than the previous electro-mechanical computers. While

the fastest computer of its time, the vacuum tubes were

unreliable with several burning out every day. As such it was

only functional about fifty percent of the time.

The ENIAC was developed under a war footing. Much like

the differential analyzer its intended purpose was to calculate

artillery firing tables for the US Army Ballistic Research

Laboratory. It was used primarily for this purpose for ten

year until its decommissioning in 1955.

It is often interesting to compare historical characteristics of a

device with their current counterparts. The Eniac was quite

imposing. It weighed about 25, 000 kilograms (27 tons) and

had a footprint of 167 square meters (1800 square feet).

Figure 1.9: ENIAC at the Univer-

sity of Pennsylvania.

With regard to computing power, it could manage twenty 10

digit decimal numbers, and perform 5, 000 addition or

subtraction operations per second. Much slower at

multiplication, it could perform 357 full precision

multiplication operations per second. It could, of course,

multiply faster if less precision was required for the factors.

Full precision quotients could be calculated at a rate of about

35 per second.

Compare that to a modern smartphone that weighs in at a

fraction of kilogram and can compute are millions of

operations per second.

Whether the computer is a two hundred year old mechanical

computer or a modern electronic computer it will have a

common trait. There will be the physical device - the gears or

circuits - and the set of instructions - the program - that will

drive the computer. The physical components are the

hardware while the program is the software.

1.6 Computer Architecture

The very first mechanical computers - think back to the

Antikythera mechanism - were limited by their design to
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solve a single problem. Later computers - such as the Eniac

and Univac - could be made to perform many different types

of computation. But they were still constrained by how the

operations - the programs - were entered into their computer.

Those early computers, such as rulers and protractors had

their operations fixed into the computer. In these cases the

programming was static; once created it could not be

changed. To use the rulerYou cannot change the marks on a

ruler or a protractor, or add or remove planets from the

Antikythera mechanism.

While these devices were programmed, the program - or the

algorithm - was built into the machine. The operations were

integrated into the design of the computer. The program and

the hardware were one and the same.Program
The ordered set of instructions that

direct a computer on how to com-

plete an algorithm

.

As a result, these computers did not require a means of

programming them once they were built.

But some of the early mechanical computers - Babbage’s

analytical engine - and the electronic computers like the

ENIAC and UNIVAC were programmable - meaning that the

instructions could be changed. It could be revised, or

replaced completely. This created the idea of a temporary set

of specific instructions that would enable a computer to run a

particular algorithm. As this was separate from the computer

itself - what we now know as the hardware. Further, these

instructions were more ethereal. It lacked the physical form

of the computer. Since it was not hard like a physical device,

it became known as software.

Hardware

None of us can avoid interacting with technology. We deal

with a multitude of computer devices every day. On a

personal level these might be phones, tablets, a laptop or

desktop computer. Moving outward we use online payment

systems, and ATMs. The technology that run these devices

could be personal but they could be a mainframe computer

that we do not even see. The common trait is this these are all

examples of hardware; physical devices that run programs.Hardware
The physical components of which

a computer is made

.

"What you kick when it doesn’t

work.’"

But hardware is more than just the computer. It also includes

all of the physical components of the computer. The

processors and the peripherals such as the monitor, the

keyboard, the mouse, and the physical storage memory are all

hardware. We can designate these by five separate categories
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Central Processing Unit Performs the operations in the com-

puter

Main Memory Random access memory (RAM)

Secondary Storage Memory Non-volatile memory

Input Devices Devices for entering data into the com-

puter

Output Devices Devices for retrieving information

from the computer

Table 1.1: Types of Hardware

Input

Devices

CPU

and

Main

Memory

Output

Devices

Secondary

Storage

Memory Figure 1.10: Interaction between

the hardware components in a

computer.

The interaction of the primary hardware components is

shown in figure:1.10. The arrows indicate the direction the

data travels through the hardware - the data stream. Data

streams are both unidirectional and bidirectional. The input

devices - such as a keyboard or a mouse - can only send data

into the processing. Similarly the output - the monitor or a

printer - can only receive data from the processor. But the

secondary storage, whether it is a hard drive on the computer

or cloud storage over a network are bidirectional. The data

streams both into the processor from the secondary memory

as well as from the processor to the secondary storage.

Software

Hardware is physical, but software is different. Hardware

consists of the physical components of the computer, but

software is more vacuous; it is the program. While you can

read the instructions, you cannot actually hold them. Software
The instructions that direct the op-

eration of the hardware .

.

"What you blame when it doesn’t

work.’"

Software is the set of steps that we follow; what we will call

an algorithm or a program. the program on a computer is the

language specific set of instructions the computer will follow

in completing a task. Program are commonly written in high

level languages that can either be compiled to create a single
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executable file to run on the computer, or can be interpreted

one line at a time to complete the task.

But software can also be simple. Measuring the distance

between two points involves following a set of instructions.

How we do this - put the leading edge of ruler on one point

and the flat edge on the other, then read the value off the rule

- is the program. In this case we are the computer, our hands

and eyes the input device, our brain the processor, and also

the secondary memory. The process is the software.

Our goal is not to develop the hardware, but instead the

software. The software can be a single line or command - or a

complex set of millions of lines of instructions, but the

process is the same in that it will collect data and transform it

into information.

Summary

Almost anyone you ask the question "what is a computer?"

will provide a similar answer; a desktop machine, a laptop, a

tablet, or perhaps a phone. And while they would be correct

in that they are all computers, they are not the limit of

computers. Computers are simply devices with which we

compute.

A computer can be a modern electronic device, but it can also

be our fingers and toes. It is the ruler that we use to measure

a line or the protractor to determine an angle. These devices

all share a common trait. They take data and process it into

information - they compute.

The computer itself can be separated into hardware and

software. The hardware is the set of physical components;

input devices, processors, output devices, memory. The

components each perform a different task such as entering

data, processing it, or delivering the information to the user -

the results. To make all of the components work together

requires software, a set of instructions on how to process the

data.

So while computers compute, the challenge can be in how the

process is done. Whether it is the task of putting a straight

edge to a line or calculating complex beam loadings for a

bridge, there will be a specific process we must follow. This is

an algorithm. And when we implement the algorithm on a

computer, it becomes a program. As we move forward we
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will need to understand how to develop an algorithm and

implement it as a computer program.

Self Test
1. What is computing?

2. What is the role of the electronic computer in

computing?

3. What are examples of the computers used by the

ancients.

4. Write about the first mechanical computer.

5. What is the Antikythera Mechanism?

6. What was Babbage’s Analytical Engine?

7. Who were the first computers?

8. What is an interruptor in computer terms?

9. How did world conflict bring about advances in

computing?

10. What was the use of ENIGMA machine?

11. What was the ENIAC?

12. What was the UNIVAC

13. What is hardware?

14. What are the primary components of hardware? What

do each of these do?

15. What is a software?

16. Describe the difference between hardware and

software. What are examples of each?





Computing and
Computation 2

Computer science is not about machines, in
the same way that astronomy is not about
telescopes. There is an essential unity of math-
ematics and computer science.
Michael R. Fellows

As engineers, our interest in computer science leans toward

the computer as a tool. We could argue that computer science

is mislabeled. We are not interested in studying computers as

much as we are in understanding how we might use the

computer to model a system, or analyze a set of inputs.

For these cases, computer science would be more

appropriately named Computational Science. We want to know

how to use the computer to compute and after all, is that not

what computation is all about?

So how are computing and computers different from

computation? A computer is a device, usually mechanical or

digital - although it does not have to be. While we commonly

think of a computer as an electronic device, the computer

could also be ourselves as human beings using our brains

and perhaps our fingers and toes.

But computation is different from the computer.

Computation is the process of making the computer, whether

it is mechanical or digital, do our bidding; how we use it to

perform the operations that are involved in calculating a

result, or solving a problem, or modeling a system. Since our

goal should also be efficiency, with computation comes the

concept of complexity. Complexity relates to how long it

takes to complete a task - or more specifically, how much

longer it will take as the amount of data increases.

From this definition computers and computing are not

synonymous - in fact they are very different. How we

presently do computing can be extraordinarily complex but

the idea of computing is quite simple. Computing is the

process of turning data into information.
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2.1 Computation

Computation is a simple concept - but far more than just

adding and subtracting. It is the process of collecting data

and turning it into information.In its most basic form

computing or computation is synonymous with calculations

such as arithmetic. While it is true that when you calculate

you are processing data and are converting that data into

information. But do not take the mechanics of arithmetic as

absolute - computation is more than just arithmetic. It is any

process that turns data into information. So while

computation may involve calculations it may be something

else, such as searching a database or plotting data into a

graph.

Figure 2.1: Computation is the pro-

cess of collecting data and turning

that data into information.

Start Data Compute Info End

For the sake of clarity what is data? And what is information?

And how are they different?

Data

Data are the basic components of computing. The data are

the numbers, the values, observations and facts from which

we want to gain knowledge. While we assume the data is

correct it has no context. By itself, it is meaningless.Data
Data are facts from which we want

to extract knowledge or informa-

tion.

As an example, data might be the number of hits, walks, and

runs that a baseball scored in a game. But until it is compared

to the same data of the opposing team it has little value.

Or the data is the number and weight of trucks crossing over

a bridge. By itself it is important but not something we can

use directly make design decisions. but if we use the data to

calculate stresses or strains on the cables supporting the

roadway - processing the data into information - we can

decide if the cables are an appropriate size or strength.

Information

As we saw above, Information is data with purpose. That is

information is also data, but it is data that can now be used

for decision making.
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As an example, you are given the numbers 3 and 5. This is

data. The numbers are correct - as far as you know - but you

cannot use them for anything because they have no context.

They do not yet mean anything to you. But by the process of

computing this data will become information. Information
Information is data that has been

processed, analyzed, organized, in-

terpreted, or presented to give it

purpose or put it into context. In-

formation is intended to be used

in making decisions.

Let us process this data. Five is the number of runs that the

Baltimore Orioles scored in last night’s baseball game while

three is the number of runs that the New York Yankees scored

in the same game. Further, the difference between the two

values is two and the larger of the two values was assigned to

the Orioles. Now the data has become information. The

information is that the Orioles won the game and did it by

two runs. A strained example, but it follows the process of

computing - transforming data into information.

The data that was entered into our system now has meaning.

Computing, or computation, turned the data into meaningful

information.

And with that meaning we can use our new found

information to make decisions. This is computation at its

most basic.

We usually think of data and information in terms of

numerical values, such as the stress on a beam or the time

until an event occurs, the definitions do not require us to

force numerical values onto the data. We can just as easily

manipulate nominal data - that is data that is presented as

descriptions or names. As an example, a set of data might

include Calculus, Statistics, Mechanics, Physics. The respective

information that we join to this data is that these are required

courses for an engineering student.

So if computing is turning data into information, what are

computers? Computers are the tools with which we do

computing.

The early static computers - such as rulers and protractors -

were used as computers to increase precision.

For example, data may be the distance between two vertical

sides of a door. A ruler turns this distance into a precise

measurement - say 1.2 meters. Knowledge of the distance

makes it possible for us to decide if we can move equipment

through that door.

Mechanical computers did something similar. The

Antikythera mechanism used the data in the form of the
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current date and time and processed it into the locations of

several heavenly bodies.An argument has been made that

the Antikythera mechanism was

a computer that instead of con-

verting the time into the planetary

locations, it did the opposite. The

user would set the dials to the cur-

rent locations of the planets and

then be able to read the time.

Whether the computer is our fingers, a rule, a mechanical

computer, or an electronic computer, there is a process that

we must follow to perform computing. This process is known

as an algorithm.

2.2 Algorithms

Every computing process requires following a set of

instructions. For example our original idea of computing as

basic measurement can be formalized as

Figure 2.2: Algorithm to measure

an opening

1 Start
2 Place ruler at the leading side of the opening
3 Mark on the ruler the opposite side of the opening
4 Read width of opening off of the ruler
5 End

The set of instructions that you follow to perform computing -

or solve a problem - is an algorithm.Algorithm
An algorithm is a clearly defined,

finite set of instructions that when

followed will perform a particular

task.

An example of an algorithm is the sequence of steps that you

need to add two two-digit numbers. This is the process - or

algorithm - that most children are taught early in elementary

school.

1 Start
2 Add the two right most digits
3 If the sum is less than ten then record the sum and set carry

to zero
4 If the sum is greater than ten then record the right most digit

of the sum and set carry to one
5 Add carry and the two left digits
6 Concatenate this sum with the previous sum.
7 End

Figure 2.3: Traditional Algorithm to add two numbers

The algorithm in figure 2.3 may be the common technique

but like many algorithms there are other methods as well. A

second algorithm - figure 2.4 - for adding numbers was often

used by bookkeepers when adding receipts.

Both techniques accomplish the same task - adding two

numbers together. But they do it in distinctly different ways.
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1 Start
2 Add the two left most digits
3 Multiple the sum by ten
4 Add the first of the right most digits to the current sum
5 Add the second of the right most digits to the current sum
6 Record the value
7 End

Figure 2.4: Bookkeepers Algorithm to add two numbers

This does not invalidate that these are both algorithms. There

is no requirement that there can be only way to complete a

task.

What is important is that if many different bookkeepers

follow the same algorithm on the same set of data they will

calculate the same sum. No matter who, or what computer,

follows the algorithm if they have the same data they must

get the same result.

Every algorithm follows the same criteria.

1. It shall have a single, clearly defined starting point.

2. Each step is deterministic.

3. It will reach a clearly defined end after a finite number

of steps.

4. It will account for any contingencies.

Why these criteria are important can be explained with an

example of ten people traveling to the same location.

1. A single, clearly defined starting point. Everyone who

follows the algorithm must start at the same spot. What

would happen if our ten people all had identical

directions to follow, but each one started at a different

location? They would start out going the same direction

and turning at the same times, but they would be at

different locations when they do each task. The result is

that they would finish at ten different places.

2. Steps are deterministic. What happens at each step

cannot be left to chance. If different people follow the

algorithm they must each have the same result. In our

traveling example, each person who arrives at an

intersection must make the same turn. If some

randomly decide to turn left, while others turn right or

continue straight, the again would finish at different

locations.
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3. Ends after a finite number of steps. The algorithm

cannot be open ended. If the traveling directions had a

set of four right turns it is possible that our travelers

would go in circles forever - an infinite loop.

4. Accounts for any contingencies. What if during the trip

there is construction and the road is blocked? The

algorithm must be able to address necessary

alternatives. This issue of contingencies brings up the

possibility that for a particular set of data there is no

solution. In that case the algorithm should allow for an

end. If our travelers are flying, and the airport is socked

in with fog, then their flight is not leaving. They have a

choice to make - find alternative transportation or just

go home. If they go home, then the algorithm ends

despite not providing the desired result. In this case the

algorithm has two ends - but still only one start.

An algorithm is a precise set of rules that describe the specific

steps that will solve a problem. If you implement the

algorithm correctly you are guaranteed to find the solution to

a problem.Program
A program is an ordered set of

instructions that implement an al-

gorithm.

So how do we implement the algorithm? It is generic. It is not

designed to be implemented by a specific person or on a

specific computer. To do this we need to convert the

algorithm to a form that can be understood by the device. We

need to write a program. Thus, to implement the algorithm

we run a program.In this case the program is a com-
puter program; a program that is

designed to be run specifically on

a computer. But programming is a

general term that involves any type

problem solving. In fact, programs

are the general name for any or-

dered set of instructions that need

to be followed. This could be a com-

puter program, or - from the field

of optimization - what is known as

mathematical programming, lin-

ear programming, or dynamic pro-

gramming. Or, quite simply, a pro-

gram is the list of names that

present the order of performance

of children at a piano recital.

Semantically we often interchange the terms algorithm and

program, But there is a slight difference. While the algorithm

is a process that performs computing, the program is the

specific, ordered set of instructions that when implemented

will solve the problem.

The algorithm lays out the steps involved in the process.

While we could just write out each step - this is often known

as pseudo code, a common technique is to create a schematic of

the program - a flow chart.

2.3 Flow Charts

A flow chart is a schematic of an algorithm. It shows each

step involved in the process with connections indicating the

next action once a step is complete.
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Flow charts are commonly written with a set specific

geometric shapes for each the type of the action. Ellipses are

used to indicate the Start and End; trapezoids for inputs and

outputs, diamonds for decisions, and rectangles for

executable - or action - steps.

Start / End

Start and End are depicted as an ellipse

Input / Output

Inputs and Outputs are depicted as a

trapezoid

Process

Processes are depicted as a rectangle

Yes/No

Question

Yes/No Questions are depicted as a dia-

mond

Figure 2.5: Flow Chart Symbols

While there are many other symbols that used in flow charts,

these four are the primary ones and the only that we will use.

In a flow chart each node connects to one other node. These

connections are unidirectional and one to one - that is they

may only connect one node with one other node. You cannot

create a one to many node connection. Doing so would

violate the rules of algorithms in that each action must lead

to the same next action each time.

There is one action that at first appears to violate this rule -

the decision diamond. When we implement the decision
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there will be exactly two paths; one for true or yes, and a

second for false or no. This is still deterministic since there is

only one path if the answer is yes and it is always the same

path. The same holds for when the answer is no.

With one exception any descriptions are written within their

shape. The exception is the connection labels for the decision

diamond. Convention is that a small true or false be written

next to the path. These labels are not actions so they are not

placed inside of a shape.

There are three different structures that we will be using in

flow charts and in our programs; the Sequential Structure, the

Selection Structure, and the Repetition Structure.

Sequential Structure

The most simple algorithm to be depicted in a flow chart is a

sequential structure. A sequential structure is when each

action in the algorithm follows directly from one to the next.

Figure 2.6: Flow Chart for Sequen-

tial Structure

Start

Process

End

“Begin at the beginning, the King

said very gravely, and go till you

come to the end: then stop.”

Lewis Carol in Alice in Wonderland

In a sequential algorithm the order of the actions are

important. If you change the order then the results you

would expect the results to be different.

Sequential Structure
A sequential structure is a pro-

gramming structure in which each

step follows a linear path from

start to end.

In its most simple form, figure 2.6, the sequence is Start -
Process - Stop. This is linear - each step follows the same one

that immediately precedes it. If you run the program

multiple times it will follow the same steps in the same order

every time.

We have already seen a flow chart that implements a

sequential algorithm. Figure 2.1 depicting the process of

computing - turning data into information - is a sequential

structure.
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Another example is the bookkeeper’s algorithm (figure 2.4).

The algorithm can be written as a flow chart using a

sequential structure (figure 2.7).

Start

Input First

Value

Input Next

Value

Add the tens’

digits

Multiply sum by

10

Add first ones’

digit to sum

Add second ones’

digit to sum

Print Sum

End

Figure 2.7: Flow Chart for the

Bookkeeper’s Algorithm

Recall that the sequential structure is linear - it never leaves

the same path. But what if there are exceptions? Perhaps a

number is negative in which case you should subtract the

digits. This requires a second structure - a selection structure.

Selection Structure

The sequential structure provided a means for following a

specific set of steps - one after the other. Every time that the

algorithm is run the results are the same. But it often occurs

that a decision must be made. Perhaps a low temperature

requires a furnace to be turned on. Or a pathway is blocked

and an alternative will have to be followed. Or in the case of

the Scarecrow from the Wizard of Oz, you simply have a

preference of one over the other.

Selection Structure
A selection structure is a program-

ming structure in which a true -

false (yes or no) question is asked.

The answer determines which of

two paths the algorithm will take.

To incorporate this decision making ability to an algorithm

requires a second structure - the selection structure or what is

commonly called the branch.

An example of the use of the selection structure in the

Bookkeeper’s Algorithm is dealing with negative values. The

sequential structure is fine when each value is positive - you
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Figure 2.8: Flow Chart for Selec-

tion Structure

Start

True

or

False

Question

Process if True Process if False

End

True

False

just add to the running total. But if it is a debit instead of

receipt you would subtract it from the total. Since you would

be subtracting twice - first for the tens value and then for the

ones value - the algorithm needs to know whether to add or

subtract. We can do this by adding in a selection.

There is an argument that it is this decision making process

in the selection structure that makes a computer reason. While

it is true that this is the foundation of artificial intelligence it

is far from true reasoning. The reason for this is in the ability

of the selection structure.Warning The decision controlling

the branch of a selection structure

is binary. It can only take on one of

two possibilities. In this any ques-

tion must be answerable as Yes or

No, True or False, or 1 or 0.

The decision component in the selection structure asks a type

of question; Is the number negative?, or Is the fruit an apple?.

This is similar the game of twenty questions. Each question

must be answered as Yes or No, or True or False, or using

integers 1 or 0. That is it. They questions are not open or free

response. This means that you cannot ask questions such as

What would you like for lunch?, but you could ask Would you
like a peanut butter and jelly sandwich?

What if we have three numbers to add, or four, or a hundred?

The algorithms that we have been demonstrating sequence

and branches, but what if we need to repeat? This requires

the third structure - the repetition structure.
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Repetition Structure
A computer does not do anything

any of us could not do. It just does

it over and over again without

complaining

David Barron

There is nothing that a computer program does that a person

could not do themselves given enough time. The value of

computing is not necessarily that the computer can calculate

very quickly but that it can do the same calculation hundreds

or millions of times. A person would never do that. The

application of performing the same operation multiple times

employs a repetition structure.

Start

True

or

False

Question

Block if True

Additional

Processes

End

True

False

Figure 2.9: Flow Chart for Repeti-

tion Structure

Repetition Structure
A repetition structure is a program-

ming structure in which a set, or

block of instructions are repeated

multiple times.

Extending the addition of a sum of numbers algorithm, a

repetition structure could be employed if instead of two

numbers we are adding three, or four, or one hundred. We

could assume that we do not know have prior knowledge of

how many numbers are to be added. The repetition structure

would then run as many times as we have numbers.

The flow chart in figure 2.10 is shorter than th sequential

approach. But more importantly it is open-ended. We could

have extended the sequential structure for adding numbers

to any amount, but whatever that number of values is we

would be stuck with it. If we wanted to add different number

of values we would have to change our algorithm.
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Figure 2.10: Flow Chart for Using

Repetition to Add Several Num-

bers

Start

Set sum to 0.0

Another

number

to add?

Input Value

Add value to sum

Print Sum

End

True

False

For the sake of simplicity, the flow chart using repetition is

for adding a set of numbers. We could change this algorithm

to the bookkeeper’s algorithm by adding two repetition

structures. The first would be for adding the tens digits then

a second for adding the ones.

We have seen three different structures for depicting an

algorithm. Further we took note that if we replaced the

sequential structure with a repetition we could make the

addition algorithm more versatile. But we should also be

interested in the efficiency of the algorithm. Is there one

structure that is more efficient than another?

2.4 Complexity

An algorithm identifies each action to be taken, but as was

shown there can be more than one algorithm for a particular

task. So which to use? The choice of algorithm may come

down to several items. Which algorithm is the easiest to
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understand? Which is easiest to implement? Which is the

most efficient in terms of the number of computational steps

involved? Which algorithm is the most efficient in terms of

the amount of space - or memory - required to implement it? Computational Complexity
Computational complexity is a

measure of the rate of increase in

the additional steps as the amount

of data increases.

In analyzing an algorithm we must take into account two

items; the amount of memory that will be used, and the

number of steps that it will take to complete the algorithm.

The memory is known as spatial complexity while the number

of steps is the algorithmic complexity or computational
complexity.

The number of steps is not the same as the amount of time.

The steps in an algorithm is independent of the platform on

which the program is being run, while the time is dependent

upon the processor speed. A program on a slow computer or

fast computer will still have the same complexity.

Comparing the complexity of different algorithms is done by

creating a function of the number of steps with respect to the

size of the input. If an algorithm has 𝑛 data inputs then the

complexity would be 𝑓 (𝑛). As an example, two algorithms

may have two complexity functions; 𝑓1(𝑛) = 𝑎1𝑛 + 𝑏1 and

𝑓2(𝑛) = 𝑎2𝑛 + 𝑏2. Depending upon the values of 𝑎1, 𝑎2, 𝑏1,

and 𝑏2 one of these algorithms may use fewer steps or more

steps than the other.

While it is tempting to calculate the actual number of steps,

or the amount of memory, the actual number of steps is not

what is important - the rate of change in the number of steps

is. Being the rate of change, complexity is the first derivative

of the number of steps. Further, the actual values are not of

interest. Complexity is a relative measure.

Complexity Running Time Example

Constant Time 𝑂(1) Calculating the median of a set of values

Logarithmic Time 𝑂(log(𝑛)) Searching an ordered set of values

Linear Time 𝑂(𝑛) Calculating the mean of a set of values

Log - Linear Time 𝑂(𝑛 log(𝑛)) Comparison sort algorithm

Quadratic Time 𝑂(𝑛2) Bubble sort algorithm

Polynomial Time 𝑂(𝑛𝑝) Set of nested repetition structures

Exponential Time 𝑂(𝑏𝑛) Brute force password attack

Factorial Time 𝑂(𝑛!) Traveling salesman problem

Table 2.1: Ordered list of algorith-

mic complexity

The rate of change is described by the term with the largest

first derivative. For example, if the number of steps is

𝑓1(𝑛) = 𝑎𝑛 + 𝑏 then the magnitude of the derivative is

controlled by 𝑛, the linear term. Because of this the number

of steps - or complexity - will increase linearly as the amount
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of data increases. Another way of looking at this is to ask

“How much longer will the algorithm take if the amount of

data doubles? or increases by a factor of 10? For the linear

algorithm if the amount of data doubles then

𝑠2 = 𝑓 (2𝑛)
= 2𝑎𝑛 + 𝑏

≈ 2 𝑓 (𝑛) = 2𝑠1 (2.1)

which is approximately double the number of steps for 𝑓 (𝑛).
If the amount of data increases by a factor of ten then the

number of steps is about ten times the number of steps for 𝑠1.

The complexity for this algorithm is described as 𝑂(𝑛) - read

as “Big O of n”. 𝑂(𝑛) is also known as linear time. This

means that the number of steps is a linear function of the

amount of data.

Constant Time

The fastest algorithms operate in 𝑂(1) time; known as

constant time algorithms. While it is often erroneously

thought that the algorithm takes a single step, it in fact takes

a constant number of steps. This constant could be any value.

As a function, if there are 𝑛 items of data the algorithm takes

𝐴 steps. In this case increasing the amount of data - have the

amount of data grow from 𝑛 to 𝑛 + 1 - the number of steps

does not change. It is still 𝐴.Median
The median is the value that di-

vides a sorted set of data into two

equal sized halves. If the number

of observations is even then fifty

percent of the observations are be-

low this value and fifty percent

are above. If it is odd then the two

halves consist of fifty percent of

the observations not including the

median value itself.

An example of a constant time algorithm is determining the

median of a sorted set of values. If you have a list of 5 values

and they are sorted from the smallest to the largest then the

median value - the value at which half of the data is below

and half is above - is 𝑥̂ where

𝑥̂ =


1

2

(
𝑥 𝑛

2

+ 𝑥 𝑛
2
+1

)
𝑛 is even

𝑥 𝑛+1

2

𝑛 is odd

The formula for the median shows that the number of

observations - the data - is not a factor in the algorithm; only

knowledge of the value for the number of observations is. If

𝑛 = 5, or 10, or 5000 the number of steps remains the same.
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Example:
A class of forty one students are sorted by their height.

Each one is sitting in a numbered seat - say from 1 to 41.

The professor wants to find the the student with the

median height.

The median will be the student in seat
41+1

2
= 21. The

professor asks student twenty one to stand.

Now there are 287 students again sorted and in num-

bered seats. The median height student is the one in

seat
287+1

2
= 144. It took the same number of steps

despite there being seven times the number of students

in the data set.

Logarithmic Time

Between constant and linear time is a complexity known as

logarithmic time, 𝑂(log
2
(𝑛)). An example of a logarithmic

time algorithm is a binary search. A binary search is done on

an ordered set of data. To find the location of a particular key

the algorithm first checks the middle most value. If the key is

smaller than the middle value then all of the upper half is

ignored and the binary search is repeated on only the bottom

half. This is repeated until the value is found or there are no

more elements in the set.

Binary Search
A binary search algorithm is one

in which a sorted set or list or ar-

ray of data is searched by check-

ing the middle most observation.

If the comparison does not match

this value then either all data be-

low or above is excluded from the

search and only the remaining half

is searched. The binary search has

a complexity of 𝑂(log
2
(𝑛)).

The speed of the the logarithmic time algorithm is easily

calculated. Since the binary search eliminates half of the

remaining data each step, a data set with 𝑛 = 32 will have

𝑛𝑚𝑏𝑜𝑥𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = {32, 16, 8, 4, 2, 1} with each pass. This

means a worst case search time of log
2
(32) = 5 passes. A

recursive form of the binary search algorithm will be

presented in chapter 8.

Linear Time

As mentioned before, an algorithm that is slower than

logarithmic time is linear time, 𝑂(𝑛). This is a common

complexity for a single repetition structure or loop. Mean
The arithmetic mean of a set of

data is the sum of the values of

each observation divided by the

number of obervations.

An example of a common linear time algorithm is the

calculation of the arithmetic mean of a set of data.

𝑥̄ =

∑𝑛
𝑘=1

𝑥𝑘

𝑛

This calculation can be done using a single repetition

structure. For each additional observation the algorithm will

require an additional step, thus 𝑂(𝑛)
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Log-Linear Time

There are many algorithms for sorting data. While it is

possible in a specific case to sort a set of data in linear time,

sorting algorithms are commonly slower than 𝑂(𝑛). The

fastest of these is the comparison sort.

A comparison sort functions in 𝑂(𝑛 log(𝑛)) or what is known

as log-linear time or sub-linear time because while slower than

a linear algorithm it is still faster than 𝑂(𝑛2).

Quadratic Time

A second sorting algorithm - and one that is commonly

taught because of its ease of programing - is the bubble sort. It

runs in 𝑂(𝑛2) or quadratic time.

The bubble sort is an example of an algorithm that is

implemented using two nested - one inside of the other -

repetition structures. Two nested loops, running in 𝑂(𝑛2)
time, is an example of a quadratic time algorithm.Polynomial Time

An algorithm is polynomial time

if the number of steps to run the

algorithm is 𝑂(𝑛𝑝). Polynomial Time

The quadratic time algorithms are members of a set of

algorithms know as polynomial time algorithms or 𝑂(𝑛𝑝)
where 𝑝 > 0 is a constant.

Any algorithm that is polynomial time or faster is considered

operational. That is it can be programmed and for

increasingly large amounts of data can still be run to

completion. This may appear paradoxical since there is not

upper bound on 𝑝. Clearly there is a difference between a

𝑂(𝑛3) algorithm and one that is 𝑂(𝑛100). And there is, but

they both will run to completion.

The issue - and a reason for our interest in algorithmic

complexity - is that of algorithms that run in non-polynomial
time.

Exponential Time

A common issue confronting all of us is security. Let us start

with a simple example. A combination bicycle lock takes four

digits. Since there are ten possible digits for each there are

10
4 = 10, 000 different combinations. A computer algorithm

to crack this would only need to try 10, 000 different

combinations.
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But what if instead of four digits we require eight? Then the

growth in the number of steps to crack the lock just increased

to 10
8 = 100, 000, 000 different combinations.

The growth in the number of combinations that the computer

would need is an example of exponential complexity. In this

case it is 𝑂(10
𝑛). The general form for exponential

complexity is 𝑂(𝑏𝑛) where 𝑏 is an unspecified constant.

It is the challenge of exponential complexity that can make

computer passwords more secure. While many companies

require passwords to be a minimum of eight characters with

mixes of upper and lower case, numerical digits, and

characters, these passwords still come under the cutoff for a

fast computer to crack - and are of course very difficult to

remember.

The alternative may not be to make the password more

complicated by mixing letters and characters, but simply to

make it longer. If the only requirement is that the password

be at least twenty characters long, then there are

26
20 = 2𝑥10

28
different passwords. And while twenty is not

actually all that long the exponential complexity of a brute

force attack makes it difficult to break.

Another example of an exponential time algorithm is the

recursive Fibonacci function. This algorithm is 𝑂(2𝑛). We

will look at this in chapter 8.

If 𝑛 is small, a 𝑂(𝑏𝑛) algorithm can be completed. But

recognize that for each addition data point the number of

steps increases by a multiple of 𝑏.. This rapidly increase in

the time makes any algorithm with a much more data

completely unusable.

But while an exponential time algorithm is unusable for all

but the smallest data sets, there is a common time complexity

that it even worse.

Factorial Time Traveling Salesman Problem
Given that there are 𝑛 cities with

known distances between each city,

what is the shortest possible route

that a person can visit each city

and return their starting point?

The Traveling Salesman Problem

- TSP - is a common example of a

factorial time algorithm.

There is a famous problem in which a traveling salesman

must visit 𝑛 cities. The goal is to find the path that connects

all of them that has the minimum distance. The brute force

approach is to start a city then go to every city, recording the

distance. You then move to a new starting city and repeat this,

continuing on until you have travelled from every city in the

network to every other city. If there are 𝑛 cities then this
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algorithm will take 𝑛 · 𝑛 − 1 · · · 2 · 1 = 𝑛! steps. As such the

algorithm is 𝑂(𝑛!) known as factorial time.

The complexity - or running time - of an algorithm is

important not for what it tells us about the actual number of

steps, but for when it tells us that an algorithm is unusable.

While polynomial time algorithms may appear to be

inefficient - 𝑂(𝑛5
0) is a polynomial time algorithm - they can

still be coded and run to completion given a reasonable

amount of time. So even as the amount of data increases the

number of steps also increase but not so fast that the time

grows out of control.

In reality, an algorithm that is 𝑂(𝑛5
0) is an outrageous

number of steps but it is still polynomial time. The reality of

programming is that in engineering it is unlikely that we

would ever have a polynomial algorithm that is slower than

𝑂(3𝑛). This would be the complexity if you have three loops

nested one in inside of the other. You might have this if you

were programming a finite element analysis in three space.

While polynomial time algorithms tend towards 𝑂(𝑛2) and

possibly 𝑂(𝑛3), there are common models that go beyond the

polynomial time into exponential and factorial time

algorithms. Unless the size of the data set is extremely small

the amount of time that these algorithms would take to run to

completion would often be beyond our abilities - for even the

fasted computers. As a result there are many non-polynomial

algorithms in which active research is to develop an

alternative that will run in polynomial time. Until that time,

if you know the algorithm is exponential or factorial it is

probably best to step back and look for an alternative model.

2.5 Engineering Design Process

Creating a flow chart is a step in the process of creating an

algorithm. But most of the time our goal is a bit more. We

want to create a computer program to assist us in an

engineering analysis, or in modeling a system, or as part of a

design process.

Too often when writing a computer program we take an

approach similar to one (and just as wrong) as we do when

writing a composition for an English class. The professor tells

us all of the steps involved in creating writing such as brain
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storming, outlining, writing rough drafts, and so on, but in

the end we just start writing the composition.

Programming is similar in that when we have to write a

program we just start writing it - without much thought to

how or why. Instead we can follow the standard approach of

an engineering design.

There is a process that we, as engineers, use as part of the

design process. We

▶ Define the problem

▶ Specify the requirements

▶ Build a prototype

▶ Build the product

▶ Test the solution

The engineering design process is directly adaptable to

writing computer programs. It does not matter if we are

writing a short code or building a large software project, the

process is similar - just a matter of scale. Stating the problem

is exactly the same. The specifications and requirements for a

design project become understanding the inputs and outputs

of the program. Building a prototype becomes working out a

solution by hand. The final product is actually the most

similar - building the product and writing the program are

the same idea. A flow chart of the engineering programming

design process is shown in figure 2.11.

Start

State the

Problem

Determine all

Inputs and

Outputs

Prototype By

Hand

Write the

Computer

Program

Test - Test -

Retest

End

Figure 2.11: Engineering Design

Process
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Whether we are building a bridge or designing a

manufacturing line the five steps are self explanatory. But

what do they mean with respect to writing software?

State the Problem

The first step is also the one most likely to be overlooked. We

are already convinced that we know what the program must

do, but do we? A statement of the problem to be solved can

often provide a path that will need to be followed, including

the many steps that might be overlooked if you had just

started to write the program. The simple step of stating - and

perhaps outlining - the problem can solve hours, days, or

weeks of adding new code or rewriting the code after the fact.

Determine the Inputs and Outputs

Much like the previous step of stating the problem, we often

jump into coding without a clear idea of what data will be

needed to run the program and what information will be

created when it is done. We will as we develop programming

techniques that a common style is is to group all of the inputs

and later the outputs together. If we are clear at the start what

inputs and outputs we will need we can start our program by

creating the necessary code to enter the data and return -

commonly print - the information. With this done we will

know what we call all of the inputs and outputs, and as

important we do not have to add input or output code as we

developed the program.

Write the Program

It took three steps but you are finally at the point where you

would actually write the computer program. If you have

followed the process this step should be direct - you have all

the details that you need for your code.

There is also are also possible sequences that you can follow

in writing your program. By having the plans in place -

perhaps creating a flow chart you could save hours or days

on coding.If you are working alone then you will be

responsible for the entire program. In this case there is an

approach to coding that can be beneficial.Teaching a dog to swim If you

want to teach a dog to swim you

need to address the question what
do I teach first? The common re-

sponses are to teach them to get

into the water, or to dog paddle,

or just to float. In fact the first les-

son should be on how to get out

of the water. If the dog cannot get

out then all of the lessons are for

naught.

There is a paradox in computer programming. It is where do
we start? The conventional wisdom would be to start at the

beginning just like we did when designing an algorithm and

creating a flow chart. But this is actually backwards. Much
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like teaching a dog to swim we need the end results first.

Thus we do not start with creating inputs or even

calculations, but instead we start by creating the output.

The first step in writing a program is to return all of the

outputs. It does not matter that you do not have any input

data or calculations or the information that you will be

returning or printing. Make up output information that will

act as a temporary placeholders until the real information is

available. You can even go so far as to work in all of the

formatting so that the output - when it is using real

information - looks just the way you want it.

The next step is actually the middle step. Now create fake

input data and work on the computations or analysis.This

way you have consistent inputs and do not have to repeatedly

enter them into the program. If they are hardcoded they will

not change and you can save hours entering and reentering

the same data.

The final step in writing the program is to create the start -

the data input. Since the rest of the program is done all that is

required here to create the interfaces for data input. This

could be by having a user enter the data, or by having the

program read or access the data from some other source.

What is important in this step is data integrity. Is the data

that is being used correct? This is where all of the initial data

checking and verification will take place

Once the data input is complete, is the program done? Sadly,

no. Now comes what may be the most challenging step of all -

Quality Control. You need to start testing.

Test - Test - Retest

If the program has been written, why is there an additional

step? The reality of any computer program is that if there is a

problem with it, the programmer will be blamed. And the

chances are always good that there is a problem. Thus the

quality control step for even the most simple program.

When you test you need to perform multiple tests. This

usually involves changing inputs to the model. You need to

test the common - the inputs to the program would be

expected. For example, if the model expects temperatures to

be between twenty and one hundred degree, then run the

program with many values between twenty and one hundred
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degrees. The goal in this case is to determine if the program

works as expected when it is used as expected.

But you should also test it against the extremes. While twenty

and one hundred might not be expected, they are still

possible - albeit rare - and should be tested as well.

But the third case is that of nonsense. If the input can never

be below twenty, then test values of zero, or negative values.

The same applies to the other other extreme. If the maximum

possible value is one hundred then it is important to also

check one thousand, or one million. In these cases the

program should probably catch the input error to ensure that

the input could not happen. While these values should never

be entered into the program under normal circumstances, a

user could enter them by mistake. Since the user did not

enter these values on purpose, the chances are great that they

would not know that they had made the error. Thus it is up to

the program deal with this type of error.

2.6 Programming Errors

Testing is meant to identify errors in the program so

correcting the errors would be the natural progression from

testing. But correcting an error requires knowledge of the

type of error.

Programming errors can be classified as three types; syntax
errors, run-time errors, and logic errors.

Syntax Error

The first type of possible error is the syntax error. This is

commonly thought of as a typo, or a misspelling. It occurs

because the program statement has been written incorrectly.

As such the computer cannot process and execute the

statement. Since the individual statement cannot execute, a

program with a syntax error will not run to completion.

Syntax Error A syntax error is an

error in the way a programming

statement is written.

Syntax errors do not require much more testing than trying

to run the code. If the program does not run then there is a

good chance that there is a syntax error. Most compilers and

interpreters will indicate line where the syntax error is.

Common syntax errors occur when a variable name or a

command is misspelled. Another might be missing a close

such as a } or the word end on a block of code.
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Runtime Error

Syntax errors are identified when the user attempts to run

the program. But the run-time errors are more troublesome.

While they still result in the program not running to

completions, they are intermittent - sometimes the program

runs, but other times it does not.

Runtime Error A runtime error is

an intermittent error that might

result in the program ending pre-

maturely with some runs but not

with others.

There are many possible

reasons for the runtime error. Perhaps there is a line the

program in which the square root of a value is calculated.

Most times the input to the square root is non-negative and

the program calculates the square root and continues on to

the end of the program. But there are some inputs that will

result in a negative value being sent to the square root

function. If the program does not address the imaginary

value from the square root, it will crash the program.

To identify and correct the possible run-time errors you need

check your code against many different inputs. Remember

that the goal is to make the program fail. As such try inputs

that might result in a divide by zero, or a negative square

root, or create an infinite loop. These inputs may not exist in

reality but as long as the program allows them there is

possibility of run-times errors.

Logic Error

The main reason for testing is the logic error. Recall that a

logic error is when everything runs but the results are just

plain wrong. In this case there is no indication of a problem

so the user will just take the information and run with it.

Logic Error A runtime error is an

error in the way a programming

statement is written.

Black Swan Effect
The black swan effect is described

as some event that is so rare - or

even impossible - so little attention

is paid to it. Then when it happens

it has a major impact on the sys-

tem. It was described by economist

Nassim Nicholas Taleb

The Black Swan Effect describes an event that is unexpected

but then happens - often with severe consequences. It comes

from the idea that since no one had ever seen a black swan,

they therefore do not exist - but then suddenly one appears.

It is a means of explaining the importance not ignoring

events that have a low probability. It is a commonly discussed

in finance and investing but can be just as important in

engineering.

The approach to eliminating logic errors is to try many

expected inputs. If the range of input values are fifty to one

hundred try runs with input running the full range - all with

the goal of trying to make your program crash. And

remember the limits. If the normal range is fifty to one

hundred but can be as low as zero or as high one thousand,

check fifty and check one hundred. But also run your

program with zero and one thousand. If the extreme inputs
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can happen they eventually will happen. Remember the Black
Swan Effect.

But we also get into the nonsense. There is a saying in

programming that you need to make your program idiot-proof.
But remember that once you do, someone will invent a smarter idiot.
This means that if you have every reasonable input covered

there is still the chance that someone will enter unreasonable

data. You need to test these values as well. If your program is

well written then error checking the inputs will catch even

the most ridiculous inputs.

Chapter Summary

Computing is the process of converting data in to

information. Not a complex idea but one that defines a clear

goal. Data are facts. But these facts are the basis behind

making decisions. Decision making requires information. To

transform data in to information we compute.

This process commonly follows a specific steps that must be

done in a predetermined order - an algorithm. An algorithm

is the process. With a single fixed starting point and a set of

pre-determined steps it will perform this transformation. The

magnitude of the number of steps that the algorithm needs is

measured by its complexity. For a person the complexity

must be small, constant or linear for most data. But

computers can automate the process and enable us to

perform millions of calculations a second. This opens up the

computation to algorithms that operate in quadratic or more

generally, polynomial time. But the growth rate of a

non-polynomial time algorithm, such as those that run in

exponential or factorial time, will be unusable on even the

fastest computers for all but the smallest data sets.

The algorithm is more commonly known as a program

regardless of whether or not it is run on a computer. But our

goal is to automate the process and have a computer do the

processing for us. This requires us to program the computer

to perform the algorithm.

The process of writing the program can be approached in a

manner similar to any engineering design process. We state

the problem. We determine the requirements - in this case

the inputs and the outputs. We prototype the solution, or in

programming we work out a simple solution by hand. We
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build the product or system - we write the program. And

finally we test, and test, and retest.

Testing a program is intended to identify two of the three

types of errors. Errors can occur as syntax errors, runtime

errors, and logic errors. Syntax errors, such as misspellings,

or incorrect statements, will result in the program stopping at

that point. It will never continue on past that. But runtime

errors and logic errors are different and the reason it is so

important to thoroughly test a program.

A runtime error will sometimes run but it may also crash at a

point. Because it may be intermittent it is important to test a

wide range of inputs. The more varied the inputs the more

likely the runtime error will occur.

A logic error occurs when the program runs but returns

incorrect results. The hand solution is always a good starting

point in identifying logic errors, but it is just as important to

test impossible inputs to confirm that impossible inputs do

not result in what appears to be possible results.

Programming as a method of problem solving or decision

making does not require a computer, using a computer to

solve the problem is faster, can be used on models too large to

be done by hand, can be repeatable without careless

occurring, and is simply more fun.

But to program the computer will require a method for

entering the program into the computer. For this we will

need a programming language.

Self Test
1. What is a computer? How is it different from

computing?

2. What is data? What is information? Give differences

between them.

3. What is an algorithm?

4. What is a basic schema of an algorithm?

5. What is an algorithm?

6. What is the difference between an algorithm and a

program.

7. What is flow chart and why are they used? What are all

the shapes used in a flowchart?

8. What are the different flowchart structures?

9. Provide an example for sequential structures?
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10. Write a flowchart for multiplication of two numbers

using repetition structure.

11. Why is complexity of an algorithm important?

12. Explain the different time complexities. What is the

best and worst complexity for an algorithm. Illustrate a

case where polynomial complexity can be considered

worse than an exponential.

13. Explain how a binary search has logarithmic time

complexity.

14. How are exponential algorithm useful in secure

password mechanisms?

15. What are steps involved in engineering design process

16. Explain the ideal process of writing a program

17. What are the different programming errors? Explain

each of them. How are they the same? How are they

different?
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An algorithm is a set of steps - instructions - for a program to

follow. What runs the program is not really an issue. The

algorithm could be implemented by a person - something

that we do every time that we provide directions. Or it could

be a machine, in which case the machine is now a computer.

In either case when we speak of the computer we are

speaking of hardware - the physical components of the

computer.

But we need to direct the hardware on how to implement our

algorithm. We do this by providing a program. The program

is what we commonly think of as software; the instructions

that make the hardware perform for us.

For a person we just tell them the steps that we would like

them to follow. By doing this we have in effect programmed

them. But what about a machine? How do we program a

machine?

3.1 Low Level or High Level Languages

The process of programming the early mechanical computers

required adjusting gears or levers. The electronic computers

replaced the gears with wires or switches. In either case it

was a physically intensive process. It was also a time

consuming process in that it could take days or weeks to

program the computer to implement an algorithm. Software
The instruction set that controls

the computer’s hardware

.

"What you blame when it doesn’t

work.’"

These programs were also temporary. Once the

programming was complete the algorithm could be run.

When it was complete the programmers would reset the

computer and start the process of programming the

computer for the next algorithm needed.

This type of programming was often done using wires and

switches. It could take weeks to program the computer for a

single algorithm. Once programmed It might return a result

in minutes, but then the programmers would start the

process of rewiring the computer for the next program. If an

engineer wanted to run another case or adjust a model they

might have to wait weeks until once again it was their turn on

the computer. Portability
The ability for a program to be

run on multiple computers with-

out changes

.
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This was a result of the computer’s design - it was all

hardware. All of the tubes, wires, transistors, and circuits

were a single unit. To program the computer the

programming would determine how the circuitry would

interact and then ent enter the program using switches and

cables. The commands were written directly in what would

be considered machine code.

The speed and complexity of programming the computer

was a major problem. But it was not the only one. The

software lacked portability.

When a programmer created the algorithm for their analysis

it was written for the single computer upon which it would

be run. They could not write it once and then run the

program on different computers. It lacked portability. The

program was, in effect, a one-trick pony.One-Trick Pony
Someone or something that is only

good for one particular purpose,

or at doing one particular thing

.

To speed the process of programming, and at the same time

make the program portable, the software needed to be

separated from the hardware. This would require a separate

means of writing the program, loading it into the computer,

and then having the computer run it. This was accomplished

by the creation of a standardized form for writing the

instructions. This list of commands could then be used to

program the computer quickly - at least much more quickly

than what was currently being done. Along with this came

repeatability and portability. By using this formalized set of

instructions a programmer could enter their algorithm into

the computer - or any computer that would accept the same

commands - and run the program. And if necessary, it could

run it over, and over, and over again.

This was the first use of a programming language.

Low-Level Languages

The first programs were implemented in a low-level language.
The most common low-level programs are written directly in

machine code or a series of binary, 0s and 1s, instructions.Low-Level Languages
A programming language that

contain instructions that are

directly readable by the computer

A low-level language is directly readable by the computer

which makes it difficult for a programmer to understand. The

benefit is that the programs often run very efficiently; both

fast and using much less memory.

While efficient, low-level languages are difficult in which to

write programs. One type of low-level language, machine

code, requires the programmer to provide the instructions to
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directly control the computer’s Central Processing Unit (the

CPU.) This might involve the direct allocations controlling

individual memory addresses or performing specific tasks

such as loading a value or performing an arithmetic

operation. Machine code might be written in the binary code

that will be executed by the CPU.

An example of the machine code that would print Hello, world
is shown in figure 3.1. While this example is not binary, it

instead operates by allocating, assigning, and accessing

individual memory locations by their address.

1 b8 21 0a 00 00 #moving !\n into eax
2 a3 0c 10 00 06 #moving eax into first memory

location
3 b8 6f 72 6c 64 #moving orld into eax
4 a3 08 10 00 06 #moving eax into next memory

location
5 b8 6f 2c 20 57 #moving o, W into eax
6 a3 04 10 00 06 #moving eax into next memory

location
7 b8 48 65 6c 6c #moving Hell into eax
8 a3 00 10 00 06 #moving eax into next memory

location
9 b9 00 10 00 06 #moving pointer to start of memory

location into ecx
10 ba 10 00 00 00 #moving string size into edx
11 bb 01 00 00 00 #moving stdout number to ebx
12 b8 04 00 00 00 #moving print

out syscall number to eax
13 cd 80 #calling the linux kernel to execute our print

to stdout
14 cd 80 #calling the linux kernel to execute our print

to stdout
15

16 b8 01 00 00 00 #moving sys_exit call number to eax
17 cd 80 #executing it via linux sys\_call
18 cd 80 #executing it via linux sys_call

Figure 3.1: Printing Hello, World

in Machine Code Thanks to
cedriczirtacic on github for the code

Assembly Languages
Assembly language is a low-level

programming language in which

the instructions in the language

correspond to the architecture’s

machine code instructions.

While a step above machine code, Assembly, which is still

considered a low-level language, requires the use of an

assembler; a platform dependent program that converts the

program to machine code. Each statement would still be a

direct action for the computer. This might include allocating

memory, accessing variables, and performing calculations.

The syntax of the commands are often cumbersome and

confusing.

As an example, the code in figure 3.2 would be used to print

Hello World on an x86_64 processor running Linux.
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Figure 3.2: Printing Hello World

in Assembly Language Thanks to
Jack Brennen of Google

1 .global main /* Make main a global function */
2 main: /* Start function main */
3 mov $msg, %rdi /* RDI gets pointer to message */
4 call puts /* puts(msg) */
5 mov $0, %rax /* RAX gets zero */
6 ret /* return(0) */
7 msg: /* Declare a label for the string */
8 .asciz Hello World /* Define the string */

Programs written in a low-level language run directly on the

computer’s processor. This, inherently, will make the

program fast to run. But the difficulties may far outweigh the

speed.

The challenge in writing a program using a low-level

language is obvious from the two examples. Part of this

complexity is a result of the need for the program to direct

the computer to perform every action - nothing in the code is

directly interpreted by the computer. In effect, the program

must assign each item to an appropriate place in memory

and then perform the actions using the memory locations.

Each time a new variable is created memory must be

allocated for the variable. When the variable is deleted

memory must be freed up, or deallocated.

But the issues of low-level languages are more than just

memory management. For most programmers the problem is

that there is no simple, easily understood, command that can

be used to direct the computer.Abstraction
Abstraction is the process in

which actions are derived from

their context.

It is this aspect of the low-level language that is being

described when it is said that low-level languages lack

abstraction - no operations can be inferred by the command.

To address the challenges of programming in machine code,

and allow for portability of the software, programmers

created high-level languages.

High-Level Languages

Most modern programs are written in one of the many

different high-level languages. The original goal was to create

a language for writing programs that was more similar to the

syntax of a spoken language.High-Level Languages
A programming language with

strong abstraction. With the simplicity of a readable programming language,

high level languages have strong abstraction. This means that
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many of the details of making the computer operate are

already built into the language.

As an example recall the low-level assembly code in

figure 3.2 that was needed to print the phrase Hello World.

Now let’s write the same code but in MatLab.

1 fprintf('Hello World\n'); % Prints the string Figure 3.3: Printing Hello World

in MatLab

The code in figure 3.3 is still a bit cryptic. Why fprintf and

not just print? Why the \n? These items will be addressed

later but for now if you showed a non-programer the line of

MatLab code and asked them what it did they would

probably say it prints the phrase Hello World.

The difference between the two is that in the Assembly code

there was no abstraction - we needed to explicitly tell the

computer how to read the letters of the phrase into memory,

where to store them, and how they could be printed.

But in the high level language there is strong abstraction. All

that we have to do is say print the phrase and the

programming language takes care of all of the other details.

The computer still has no direction on how to do any of these

actions, it is just that the high level language has taken care of

it for us.

3.2 Types of Programming Languages

There are two characteristics that are used to identify modern

programming languages; how they work, and how the

programmer implements them. As for how the language

functions, a language can be procedural or object oriented.

This is known as the programming model.

The second characteristic addresses how the program is

written or implemented. With respect to how the

programmer writes the program, the programming language

can be compiled or interpreted.

3.2.1 Programming Model

The programming model describes how the program

operates. The two primary models are object-oriented
programming, and procedural programming.
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Object-oriented programming is based upon the creation of

classes and objects. A class is a structure consisting of both

variables and methods - smaller program instructions -

whereas an object is an instance of a class. Thus there can be

many different objects that are all of the same class. The

objects then interact with both each other and with data

streams outside of the program.

Object-oriented programs can be thought of as modular.

Each aspect of the program is a separate module and the

modules interact with each other.

While object-oriented programming has been around since

the 1950s, it has only become a commonly used

programming paradigm in the last twenty years when it has

surpassed the use of procedural programming.

Procedural programming is the original programming

language model. In this approach the programming creates

separate procedures, or functions, or methods. These

functions are often compared to mathematical functions in

that the user provides a set of inputs to the function. The

function then performs a set of operations on the input data.

The function may then perform an output action such as

printing or writing to a file, or more commonly it will return -

or send - a result back to the function that initiated the

original action to the current function.

A goal of procedural programming to implement top-down
design. This is when the program is broken down into a set of

tasks. Each of these individual tasks are then broken down

into subtasks. This process is repeated until each task that

needs to be done is trivial. At this point, the trivial tasks are

written as separate functions. The program then consists of a

driver function that calls other functions to complete tasks as

they are needed.

The programming model describes how the language

operates in solving a task, but there are also differences in

how certain languages are written and run. Languages can be

compiled or interpreted. This describes how the program is

translated from a text into something the can be run - or

executed - on a computer.

3.2.2 Program Translation

Translating a program is the process of converting the plain

text that was written by the programmer into a form that can
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be run on the computer. There are two common types of

program translation - compiling or interpreting.

Compiled Programming Languages
A program that is written in a compiled language will start

with one or more source code files. This is a text file with the

individual program commands. While every language is a bit

different, the source code file must be written as a complete

program. If the language requires a specific start command

and an end command, the source code must include these.

Start

Parse Source

Code

Syntax

Errors?

Identify Syntax

Errors

Create Object

Code

Link Object to

Executable

End

Yes

No

Figure 3.4: Compiling a Program

When the source code is in a complete form it can be run

through a compliler. The compiler is a platform dependent

program that is will convert the source code into an

executable file. More specifically, the compiler is translator in

that it translates the high level language of the source code

into the machine code needed to run the program on the

computer.

The compiler first strips all non-executable content from the

file. This includes any comments or white space. It then parses
the file. Parsing is the process of reading the file into memory

one character at a time while checking it for correct syntax. If
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an error is found the compiling process stops and usually

error messages are sent back to the programmer.

If no syntax errors are found, the program is converted to

object code. Object code is a file where the program has been

converted into binary machine code. The object code is then

linked - that is the compiler uses the object code to create an

executable file. The executable is the program file; it can be run

by the computer. It is platform dependent meaning that it can

only be run on the same type of computer on which it was

compiled. A powerful aspect of the executable is that once it

is created it can be run on multiple computers - as long as the

computer is running the same operating system - without the

need for the computers to have the compiler, or the source

code.

The process of compiling can be time consuming. It requires

the program to be in a complete state. This might be mean

only that is has a start and end. The entire program is parsed

and linked. If there is a single error in the program the

process stops without a single line of code being run. Once

the syntax error has been identified and corrected, the

compiling process can be started again.Compiled Programs

The paradigm of compiled

computer programs is that they

are Slow to Code, but fast to run

While modern compilers are fast, compiling a long program

can be time consuming. The upside side is the the executable

program is does not need to be checked for any errors.

Further, it is usually optimized by the compiler to run

efficiently on the machine on which it is written. This results

in a common saying about coding in a compiled

programming language - Slow to code, but fast to run.

The use of compiled programming languages had become

the standard because of the speed of execution when the

program is run. But there is an alternative, and while the

programs run more slowly than compiled languages, with

today’s fast processors they have made a resurgence. These

are interpreted programming languages.

Interpreted Programming Languages
The alternative writing a program in a compiled

programming language is to use an interpreted

programming language. While compiled programs and

interpreted programs may appear the same to the user, to the

programmer they are very different.

The first difference in an interpreted program is semantic.

The compiled program was written as source code. But the
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interpreted programming languages use a script. The reason

is how they function. The script can be compared to a script

that might be used in a play or a movie.

Run Lines

In the theatre, when an actor is

practicing the play with only one

other person it is said they run
lines. Similarly, the computer will

run lines when it executes the

script.

In a play script each line is either a dramatic action -

something said - or a physical action - something done.

While the actor performs that action the other actors are

theoretically idle - they wait. This is similar to how the script

is run.

Start

Lines

To

Run?

End

Parse Next

Line

Syntax

Error?

Identify

Error

End

Translate to

Machine

Code

Execute

Line

Yes
No

No

Yes

Figure 3.5: Interpreting a Program

Programs written in an interpreted programming language

act on a single line at a time. To do this, the program requires

an interpreter to translate the line of code to machine code to

be run.

The interpreter is a program written for a specific operating

system. In its simplest form, It opens the computer script and

runs the program. More specifically, the interpreter reads the

script into memory. It then parses the first line of the program.
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If it finds a syntax error, the interpreter stops the program

and prints an error message. But if it does not find a syntax

error the interpreter translates the single line of the script

into machine language and runs the line. If there are more

lines of code in the script, the interpreter goes to the next line

and repeats the process. This continues until it either finds an

error or there are no more lines of code in the script.Interpreted Programs

The paradigm of interpreted

computer programs is that they

are Fast to Code, but slow to run

One way to view interpreted programs is that the parsing

and translating are performed on each line of the program

every time the script is run. There is no executable created

but instead the script is the program. Historically this meant

that the program would run more slowly than would a

compiled program. But there was an upside. The interpreter

only needed a single line of code to run. The process of

writing a script becomes incremental. You write a line and

run the program. If it works, you write another line of code,

building the program one line at time. Each time the

interpreter is run, all the previous code has been checked,

and while it is parsed a second time, you already know that it

is correct and will not need to be updated. This makes the

process of coding faster than with a compiled language. Thus

fast to code, but slow to run.Note

The idea that the interpreted

programs are slow to run has

become less of an issue with the

faster processors in modern

computers. While they still run

more slowly than do compiled

programs, the differences are

much less noticeable.

Another difference between compiled and interpreted

programs is with respect to platform independence. Recall

that a compiled program is optimized to run on a single

platform. Thus you cannot run an executable on any

computer. But the script for an interpreted program is plain

text and can be run on any computer that has the proper

interpreter installed. Thus interpreted programs are

considered to be platform independent.

3.3 Summary

An algorithm is the process we follow to complete a task. To

implement the algorithm we write a program. But to get the

program to run on a computer requires a specific syntax, and

thus a specific programming language.

While mechanical computers would be programmed by

physically manipulating gears or levers, programs for

electronic computers consist of a set instructions that the

computer can follow.



3.3 Summary 49

In its most basic form - the low level language - these

instructions are directly readable by the computer, for

example machine language, and control the computer’s

central processing unit. In this type of language every step

must be addressed explicitly. The difficulty in this type of

programming becomes obvious for all but the most trivial

programs.

High level languages have been designed to make the

programming process more accessible. The goal is enable the

programmer to enter the commands in a syntax similar that

of a spoken language. If the program wants to add two

values, the program tells them to be added. To print the

result, the program would use a command that simply tells

the computer to print.

While the idea of the many different high level languages is

the same, the means of writing the program varies widely.

With respect the language model, they can be object-oriented

or procedural. As how the computer runs - or translates - the

program, there are compiled programming languages and

interpreted languages.

Object-oriented programming languages allow the

programmer to create modules, sometimes described as

small programs, that interact with each other or with devices

outside of the computer. In a procedural programming

language, the programming creates a separate routines, or

functions or methods, to perform individual tasks.

Whether object-oriented or procedural, the program still

needs to be translated into machine code to be run. Some

languages do this by compiling a source code while other

interpret a script.

Compiled programming languages will parse the entire

source code, identifying any syntax errors that might exist. If

there are none, the compiler then translates the plain text

source code file into object code. The object code is then

linked to an executable file. The executable is binary machine

code that has been optimized that can be run directly on the

computer without further processing. The executable is

platform dependent meaning that it can only be run on the

same type of computer on which it was compiled.

The process of compiling a program often makes the

programming process time intensive. But once compiled the

executable is efficient. Thus the paradigm of compiled

languages as slow to code, but fast to run.
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Interpreted programming languages require an interpreter

that is run on the computer. The interpreter reads the plain

text script - the program - into memory. It then parses a

single line, and if there are no errors it converts the line of the

script to machine code and runs it. It then goes on to the next

line and the next until it either finds an error or finishes the

program.

The process or parsing a single line and then running it

makes the programming process a much faster endeavor. The

programmer can write a single line of code, test it, and if it is

correct add the next and the next. This can greatly speed up

the programming process. The tradeoff is in that the each line

must run individually. Thus interpreted languages are said to

fast to code, but slow to run.

While the interpreter must be written for a specific type of

computer, the script does not. Since interpreters are available

for most of the common computer types, a script written on

one computer can usually be run on any other computer

regardless of whether it is the same type. Thus interpreted

languages are considered the platform independent.

MatLab is an interpreted programming language, and while

the programs can be written as an object-oriented program,

the programs can also be written as a procedural language.
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To err is human. To really foul things up requires a
computer.
Bill Vaughan - Journalist

If our only interest was computing it would not be necessary

to ever turn on a computer. We could study every aspect of

computing without ever writing a program. But what fun is

that? Code
The common term for writing com-

puter programs is coding, as in she
is coding the new interface. The pro-

gram itself is often referred to as

the code.

The truth is that we learn computing in order to understand

the the theory that we need to write effective computer

programs. Our goal is the program - or code as it is often

called. It is through the program that we are able to get the

computer to perform tasks for us.

MatLab is an interpreted programming language. As with

many interpreted programming languages MatLab can be

run interactively or through a written script.

4.1 Interactive Programming
Interactively
Running a program interactively
consists of entering a single state-

ment directly into the command

line.

Because an interpreted programming language is executed

one line at a time, many interpreted programs can be run

interactively; that is by entering a single statement on the

command line. MatLab is one of those programming

languages.

A simple example of interactive programming is to use

MatLab as a calculator

In each case in figure!4.1 the operations are entered on the

commend line as a simple arithmetic operation. When you

press enter on the keyboard the single line is executed - in

this case performing the arithmetic operation,

4.1.1 Arithmetic Operations

MatLab has operators - the symbol that indicates that the

program should do something - to perform the four standard

mathematic operations and a fifth for exponentiation -

raising a value to a power.
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Figure 4.1: Interactive arithmetic

1 >> 3 + 5
2

3 ans =
4

5 8
6

7 >> 9 - 4
8

9 ans =
10

11 5
12

13 >> 2 .* 5
14

15 ans =
16

17 10
18

19 >> 36 ./ 9
20

21 ans =
22

23 4
24

25 >> 3 .^ 4
26

27 ans =
28

29 81
30

31 >>

Table 4.1: Arithmetic Operators

Operator Action Example

+ Addition a + b

- Subtraction a - b

.* Multiplication a .* b

./ Division a ./ b

.∧ Exponentiation a .∧b

Each operator does in a program exactly what it would do on

pencil paper.

Dot Operator

While we are all familiar with these operators there is an

unusual component in the product, quotient, and power

operators - a dot or period in front of the operator. It is often

called the dot operator because of this.Warning
The difference between using the

dot and omitting it is an important

consideration when the two val-

ues are vectors or matrices. With

the dot the operations are per-

formed element-wise while without

it they are performed as matrix op-

erations. The differences between

element-wise and matrix opera-

tions will be presented in chap-

ter 10. Until then it is enough that

the dot be included in the product,

quotient, and power operations.
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The dot operator indicates that the operation is to be

performed element-wise instead of being done using matrix

operations. At this point we are only performing operations

on scalars and while the dot operator is the correct syntax

you would still get the correct result if you had not included

it. But since the operations are intended as element-wise it is

important to include the dot.

Order of Operations

An issue can arise when the order in which the arithmetic

operations is ambiguous. Is 3 + 5. ∗ 4 = 32 or is it 23? It

becomes clear when parentheses are added; (3 + 5). ∗ 4 = 32

while 3 + (5. ∗ 4) = 23.

But what if the parentheses are omitted? With or without the

parentheses arithmetic operations are performed in

accordance with the standard algebraic order of operations;

PEMDAS.

Order Description Operator

1 Parentheses (· · · )
2 Exponentiation .∧
3 Multiplication .∗
4 Division ./
5 Addition +
6 Subtraction −

Table 4.2: Algebraic Order of Op-

erations

Note
The order of operations is easy to

remember with any of a number of

mnemonics. As a single word, Pem-
das or as a quick phrase such as

Please excuse my dear Aunt Sally or

a variation provided by a student

Please excuse my dumb ass sister.

The order of operations show that all operations that are

enclosed with parentheses take precedence. As an example

(3 + 5) .∗ 7 = 8. ∗ 7

= 56

while

3 + (5 .∗ 7) = 3 + 35

= 38

After this it is exponentiation or raising to a power.

2 .∧ 3 + 4 = 8 + 4

= 12
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but

2 .∧ (3 + 4) = 2 .∧ 7

= 128

4.1.2 Variables
Variable
A variable is a block of allocated

memory to which data can writ-

ten and read. It is most commonly

used in a program as temporary

data storage.

Notice that in figure 4.1 each time that you enter a value or

operation on the command line the system responds with the

result but also an ans =. This would be same for any

operation or even a single variable.

Figure 4.2: Storing results in the

variable ans

1 >> 7
2

3 ans =
4

5 7
6

7 >>

In fact you could enter a number on the command line, as in

figure 4.2, and the system would respond with the same ans
=. This is an example of assigning a value to a variable.

A variable is a block of memory that has been allocated to

store data. Each memory block has an address that can be

used to identify the location of the memory.Identifier
In programming an identifier is a

name that is given to some item

so that item can be accessed in

the program. A common identifier

is the variable identifier - a name

given to a variable in the program.

While each block of memory has an address assigned to it,

keeping track of the constantly changing memory addresses

would be a herculean task. Instead, the variables have

variable identifiers - common names that can be used instead

of the variable address.

In the sample code in figure 4.2 ans is a variable identifier -

although from here on the variable identifier will be called

simply the variable. Because ansdirects the program to a

location in memory, data can be written to that location or

read from it by using the variable ans.Comment
The terms variable and variable iden-
tifier indicate the memory location

and the name that the programmer

gave the variable. This formality is

never enforced. Any time that the

term variable is used it is implied

that you mean the variable iden-

tifier. Further, if it is the memory

address that is needed the term

variable reference or variable address
would be used.

Changes to the variable are made using the = called the

assignment operator. The action is called an assignment or

assigning data to the variable.

When using the assignment operator any operations must be

performed on the right hand side of the operator. The

program will perform those operations first and the assign

the results to the single variable - if any - on the left hand side
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of the operator. If there is no assignment operator then the

results are stored in the variable ans by default. If ans already

exists the data will be overwritten.

1 >> ans = 5 + 4
2

3 ans =
4

5 9
6

7 >> Figure 4.3: Storing results in the

variable ans

The assignment operator should not be confused with a

mathematical equals sign. It does not indicate equality. In fact

in a program the assignment operations would rarely make

sense in a mathematical form. An example is having the

variable on both sides of the assignment operator. Assignment Operator
The = is called the assignment oper-
ator. It directs data to - or from - a

variable.

A common action is to have the variable on both sides of the

assignment operator. This is known as an update. Because the

program will always perform all of the actions on the right

hand side before any assignments, the current value of the

variable will be used in the operations. Once completed the

results are then copied into, and thus replacing the old values

in, the memory location. Warning
Although the assignment opera-

tor appears like a mathematical

equals sign it is important to un-

derstand that it is not an indication

of equality.

1 >> ans = 9
2

3 ans =
4

5 9
6

7 >> ans = ans ./ 2
8

9 ans =
10

11 4.5
12

13 >> Figure 4.4: Updating the variable

ans

Creating Variables

If you do not create a variable in your command, MatLab will

create one for you. In Matlab this default variable is always

ans (a diminutive of answer). It is limiting to have only a

single variable so you can create others as needed.
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Figure 4.5: Creating additional

variables

1 >> x = 16
2

3 x =
4

5 16
6

7 >> y = 3.* x - 5
8

9 y =
10

11 43
12

13 >>

There are no limits on the number of variables that you may

create in a program, and only a few limitations on what you

can name them. The rules are quite simple.

▶ A variable identifier must begin with a letter of the

Latin alphabet

▶ After the first letter the variable may contain any

alpha-numeric character or the underscore symbol, but

no other symbols or spaces

▶ Variables are case sensitive thus a variable with an

upper case letter and the same identifier but with lower

case letters are two different variables. There are no

restrictions on where an upper case or lower case letter

may be used

▶ A variable may not be a keyword. You cannot use

names such as function, or end, or while, or any of the

additional reserved words.

Keywords are words that are reserved for specific

programming purposes. Some common examples are theVariable Nomenclature

▶ A variable identifier must

begin with a letter of alpha-

bet

▶ All other characters may be

any alpha-numeric charac-

ter or the underscore sym-

bol

▶ Variables are case sensitive

▶ No keywords

words function, end, if, while, and for but there are far too

many to list here.

No worries, MatLab provides a means of determining if a

possible variable name is a keyword. It is the command

iskeyword.

Logical
A logical is a variable that is used

to denote that a test is either true -

the value 1, or false - the value 0

In the sample code in figure 4.6 the word logical that appears

indicates that the result will be one of the values 1 or 0. This

is known as a logical - an output that indicates if the test was

true or false. The logical value 1 indicates true, while the

logical value 0 indicates false.

There is another function, isvarname, figure 4.7, that can be

used to check if your variable name is legal. Much like
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1 >> iskeyword end
2

3 ans =
4

5 logical
6

7 1
8

9 >> iskeyword time2go
10

11 ans =
12

13 logical
14

15 0
16

17 >> Figure 4.6: Checking variable iden-

tifiers with iskeyword

iskeyword this function returns the logical true - or 1 - the

name that you used is legal, and a logical false - or 0 - if it is

not.

1 >> isvarname 3xy
2

3 ans =
4

5 logical
6

7 0
8

9 >> isvarname xy3
10

11 ans =
12

13 logical
14

15 1
16

17 >> Figure 4.7: Checking variable iden-

tifiers with isvarname

Data Types
Data Type
Each value in a program has a data
type. It is an attribute of the value

that is used to determine how the

program is to use the data. The

three primary data types are inte-
gers, floating point values, and char-
acters.

MatLab is what is known as a weakly typed language. This

has nothing to do with keyboards but instead is a description

of how variables deal with data of different data types.

The data type is an attribute of the data that is to be stored.

There are three primary data types; integers, floating point
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values, and characters. Since MatLab is a weakly typed

language it allows a variable to store data of each of these,

and in addition, strings.

If the data is value then MatLab will determine if it is an

integer based upon its context. That is if the value contains a

fractional part then it will assume that it is a floating point

value. If it does not then it will assume that the value is an

integer.

A issue might occur with characters or strings. If you want to

store a character or string in a variable by simply writing the

character or string the program will assume that it is another

variable. If the character is a symbol then the program would

assume that it is an operation. As a result of this all characters,

strings, and symbols are placed within a pair of single quotes.

Figure 4.8: Storing a string in a

variable

1 >> name = 'Joe Bfstk'
2

3 name =
4

5 'Joe Bfstk'
6

7 >>

The interactive approach is nice if all you need are some

simple results; calculating a few values, plotting the graph of

a function to print, or finding a single solution to a small

system of linear equations.

But for almost anything else running your program from the

command line is horribly inefficient. You need to enter each

line of a program individually, and if you want to make

changes and then run it again you have to start over. Imagine

the frustration of entering fifty or a hundred lines only to

make a numerical mistake on line one hundred and one.

To counter this you need a means of running a program that

is consistent and repeatable. You want to create a script.

4.2 Scripted Programming

The interactive approach to programming works, but lacks

efficiency and repeatability. The chances are good that once

you write a program you would want to run it multiple times

- changing a parameter or two and calculating new results.

The would require a program in which all of the executable
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statements can be run multiple times with little or no changes

to the program. Script
A script is the program that is

written in an interpreted program-

ming language. It consists of a set

of commands that will be executed

in the sequence in which they are

presented.

Since MatLab is an interpreted language this requires writing

a script.

Recall that a script is the set of executable commands that

will be followed in a specific order. An interpreted language

requires an interpreter that for each line of code in the script

▶ parses the line of code

▶ checks the line for syntax errors

▶ if an error is found - exits the program

▶ else

• translates the line to machine code

• executes the statement

• goes to the next line

This process is similar to an actor reading a play. The actor

reads a line or performs an action. Until that action is

completed - and completed successfully - the rest of the play

waits. The directions to the actors is called a script thus the

program that is written for an interpreted programming

language is also called a script.

4.2.1 Writing a script

In its simplest form, a script is simply a text file in which the

lines of code are written in the order in which you want Story
Why do we always start with Hello
World!? You could start by doing

any programming task but print-

ing an output is always first.

There is a puzzler that goes "If

you want to teach a dog to swim,

what do you do first?" Ask a hun-

dred people and you will get a

hundred answers - but rarely are

any of them the correct one. The

answer is "you teach them to get

out of the water."

The first skill is not to get into the

water, it is to get out. If the poor

dog cannot get out of the water

then all of the swimming lessons

will be for naught.

In the same way the first program-

ming skill that you need to learn

is how to get the information out

of the program. Without that you

would never know if the program

was performing the correct actions

or even any actions - thus Hello
World!

them to be run. We are going to take a more formal approach

to programming that will be better explained in chapter 5.11

but for now just do it.

The file consists a line with the name of the program - which

will call driver, the statements that we want the program to

run, and the keyword end to indicate that end - obviously - of

the program.

In MatLab this file is often called a dot m file because of the

.m suffix that you will give the file. It must have the same

name as the program name - in this case driver - so the file

will be named driver.m

Tradition has it that the first program that you write will

print the statement Hello World! on the screen. So let’s do it

Once you have written the script, you run it by typing the

name of the file onto the command line. It is a standard

convention to include a set of parentheses, but for now that is
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optional. The program would run the same with or without

them.

Figure 4.9: The Hello World Pro-

gram

1 function driver()
2

3 s = Hello World!
4

5 end

1 >> driver()
2 s = Hello World!
3 >>

This first program was simple but it demonstrates the ideas

of a script. The single line of code is parsed - read into

memory one character at a time while checking for syntax

errors, and then executed.

In this program, a string of text was assigned to a variable

and because the line does not end with a semi-colon the

value stored in the variable is printed to the screen. Echoing

is not the method we want to use for printing but for now it

accomplishes the task.

4.2.2 The form of a program

As we begin to write programs - what we will call scripts - it

is helpful to develop an efficient approach. Too often

programmers will start with a blank screen and starting

writing inputs, then calculations, then outputs. After all, this

is the form the program will take when it is done.

But it is not how it should be written. While it is the final

form of the program, it is inefficient. Instead, a more

productive approach is to work in reverse. Create the outputs

with all of the formatting to have the results in a form that

can be either printed or can be used directly. To do this you

will need variables with values. This is what we do first. Do

not be concerned with the calculations - they will come later.

Variables in a program can be classified as input variables or

output variables. The values in the input variable will later be

entered by the user of the program, while the output

variables will be the result of calculations. Regardless of the

type, at this point they should just be assigned values. This is

often called hard coding.
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Start

Input Data

Perform Calculations

Print the Results

End

Figure 4.10: Standard form of a

computer program

Start

Create variables

with hard coded

values

Write the output

commands using

the variables

Program the

calculations

Write the inputs

End

Figure 4.11: Process of efficiently

writing a program
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Once the variables in the program have been created and

assigned values - both those that will be the inputs and those

that will be the outputs to the program - start writing the

outputs.

4.3 Creating Output

A paradox of programming is that we need to be able to print

before we learn to enter data, or perform calculations. But

why?

While the program we wrote could have performed any task,

how would we know it was correct - or even if it ran at all - if

we do not have an output? The output is where the user gets

to see the result of the program. So while printing the results

seems like it should be the last task, it is actually the first.

In the Hello World! program you had the script print by

calling a function fprintf. There are actually several different

ways to print results in your program. Each of them have

their own purpose and should be used as such.

4.3.1 Echoing

The first means of printing is called echoing. Echoing is when

the results of an operation, be it an input, assignment, or aEchoing
Echoing is when the results of an

operation is printed to the screen

as soon as the action is complete.

It is activated by not ending a line

with a semi-colon (;).

calculation are printed to the screen immediately after it is

done.

Echoing is a type of flag. In programming a flag is a state in

the program that indicates that some condition has been met

or that some operation should be done. It is called a flag

because it only has two possible choices; On or Off - similar

to a flag being raised or lowered.Flag
A flag is a variable or indicator of

a state in the program. It can only

have two values - On or Off, 1 or 0,

true or false, and so on.

To use echoing you omit the semi-colon from the end of a

line. Examples of this are shown in the sample code in

figures 4.3, 4.4, and 4.5.

When the semi-colon is at the end of the line the statement is

run exactly like it was before, but nothing is shown on the

screen.

Echoing should not be used as the standard print method.

Instead it is a debugging tool. When you run your program

you can turn echoing on (by removing the ;) to check if

intermediate results are correct.Warning
Echoing is a useful technique for

checking intermediate results or

when using the command line for

quick calculations. But it should

not be used as the main method for

printing results in your programs.
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But if you use it throughout you program it becomes a

nuisance. Values - in which you are not normally interested -

continue to clutter the output. They become a distraction.

Instead, once you are assured that the intermediate

calculations are correct it is important to turn echoing back

off (by ending the line with the ;).

Since echoing should only be used for debugging, standard

practice is to end every line of code with the semi-colon; even

those that would have printed without the semi-colon.

4.3.2 Display
disp
The disp function will print strings

of text or the values stored in a

variable.

There is another print function that while it has a use for

vectors and matrices is not recommended for normal

printing. This is the disp function

1 disp(variable); Figure 4.12: Syntax of the disp
function

Unlike echoing in which the variable identifier and the value

are printed the disp function will print the variable’s data

and nothing else. This function can be used print both text -

or strings - as well as numerical data.

1 function driver()
2

3 x = 7 ./ 6;
4 disp('Printing using disp');
5 disp(x);
6

7 end

1 >> driver()
2 Printing using disp
3 1.667
4

5 >>
Figure 4.13: Printing using disp

The default for disp is to print the string or value exactly as

presented with no other formatting or alignments. It does not

print the variable identifier.

The default is to print values using with four digits after the

radix point. If the number is small enough it prints it directly

while for larger - or smaller values disp prints using scientific

notation.
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It may occur that you need to know more than four digits in

the fractional part. If so you will need to adjust the precision

of the output (the number of decimal places).

There are several system commands, table 4.3, that can set

the precision that are printed using disp. Since these are

system commands once they called they fix the formatting

for echoing and for any other system printing until they are

changed or the MatLab session is closed.

Table 4.3: Setting precision for the

disp function Format

Command Print

format bank Two digits after the radix point

format compact Four digits after the radix point

format long Fifteen digits after the radix

point

format shortEng Engineering format - scientific

notation limited to multiples

of three - with four digits after

the radix point

format longEng Engineering format - scientific

notation limited to multiples of

three - with fifteen digits after

the radix point

format shortG Either fixed decimal format or

scientific notation whichever is

shorter each value with four

digits after the radix point

format longG Either fixed decimal format or

scientific notation whichever is

shorter each value with fifteen

digits after the radix point

format hex Gexadecimal (base 16)

format rat Ratio of small integers

format + + for positive values, - for nega-

tive values, and blank for zero

format Reset to the system default

Warning
The format command is a system

command. This means that it does

not apply only to disp or to that

run of the program. It applies to

both echoing and disp and will

remain until it is either changed or

the MatLab session ends.

Printing is a primary task in most programs. And while you

can print using echoing, it is intended as a debugging tool

and should not be used in the final program.

Further disp, while providing a basic means of printing text

and data does not include many of the formatting tools that

are necessary for controlling how the output is printed.
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1 function driver()
2

3 disp('Using default format');
4 x = 53287 ./ 3;
5 disp(x);
6 format shortEng
7 disp('and now with engineering notation');
8 disp(x);
9

10 end

1 >> driver()
2 Using default format
3 1.7762e+04
4 and now with engineering notation
5 17.7623e+003
6

7 >> Figure 4.14: Changing the preci-

sion using the format command

So while we will continue to use echoing - as a temporary

means for printing - disp has been superseded by a printing

function that offers more ability to control almost every

aspect of printing. This is the function fprintf. Why is the function fprintf and
not just print?
The first f stands for file while the

second is for formatted. You use

this same function for writing re-

sults to files thus the first f. The

second part is also important. For-

matting means the we control the

width of the printed value (the

number of spaces that is uses) and

also the precision (the number of

decimal places).

4.3.3 fprintf

A function in the old C programming language provided a

method of printing both strings and data simultaneously. In

addition the function enabled a wide range of formatting.

This function has been adapted for MatLab as fprintf

1 fprintf('formatting string', ouput parameter list)
; Figure 4.15: Syntax of the fprintf

function

The formatting string can be as simple as a string of text to be

printed. It can - and usually does - include indications as to

where to print data. In the sample code, figure 4.9, since all

that you were going to print is Hello World! the formatting

string contained just that. The single quotes at the beginning

and end are used to indicate the start and end of the

formatting string.

We want more than being able to print strings of text. We

want to print our results. This will require formatting.
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Formatting the Output

How would you print variables? If you could type them in as

text then you just put them inside of the quotes but that is a

bit paradoxical. To print them you need to know the values

when you write the code. But if you already know the values

then there is probably no reason to write a program.Newline
There are a pair of characters right

before the closing quote. The \n is

called an escape sequence. It tells the

program to go to a new line at the

end of the printing.

You want to be able to print the values after they have been

calculated. This is going to require formatting. We can add

several different types of variables to printed. The most

common are strings of text, and numerical values.

The location in which you will print text is indicated with a

%s while numerical values are positioned using one of

several formatting characters. The most common are %f, %d,

%e, and %g.

Figure 4.16: Printing your name

and date in which name is a string

of text and the date consists of two

integer values and a string

1 function driver()
2

3 name = 'Joe Bfstk';
4 month = 'August';
5 day = 23;
6 year = 2025;
7 fprintf('Hello %s!\n', name);
8 fprintf('It is %d %s %d\n', day, month, year);
9

10 end

1 >> driver()
2 Hello Joe Bfstk!
3 It is 23 August 2025
4

5 >>

In the sample code in figure 4.16 the location of the

formatting characters indicate where the data will be printed.

Which variable is printed is determined by the order that

they are presented - first in the list gets printed first, second is

second, and so on.

Controlling the width and precision
Precision
Precision is distance of an observa-

tion from the actual value. In the

case of coding, precision is deter-

mined by the number of decimal

places that are retained or printed.

In the standard form the formatting characters provide the

location for printing the data value. When they print,

whatever is printed abuts the text that comes both

immediately before an after it. Additionally, if what is being
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Format

Character Action

%f Print a floating point value

%d Print an integer value

%e Print a floating point value in

scientific notation

%g Print a floating point value in

either regular notation or sci-

entific notation whichever is

shorter

%o Print an integer in octal (base

8)

%x Print an integer in hexadecimal

(base 16)

%c Print a single character

%s Print a string of text

Table 4.4: Formatting Characters

printed is a a floating point value - a number with a fractional

part (or decimal places) - then the default is to print the value

with four decimal places.

You may want additional control over the printing. Perhaps

you want to align several rows of values o the radix point (the

decimal point in base ten). fprintf also provides the ability to

control the amount of space - the width - that is reserved for

the printed data, and in the case of printing floating point

values, the precision. Radix Point
The radix point the period that is

used to separate the integer part

of a floating point number from

its fractional part. In base ten it is

commonly called the decimal point

Each of the formatting characters allow you to set the width

that this reserved for printing. This is done by adding a

non-negative value between the % and the letter. For

example, to print an integer right justified with a minimum

of seven spaces reserved you would use %7d. This applies for

any of the non-floating point formatting characters.

The syntax for doing this with an integer variable is shown in

figure 4.17. Of course the w would be replaced with an

integer value.

1 fprintf('%wd', integer_variable); Figure 4.17: Syntax for reserving

w spaces for an integer

This same addition will work with all of the non-floating

point data types. For example, %32s will reserve 32 spaces

for a string of text.
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Figure 4.18: Printing your name

and date in which name is a string

of text and the date consists of two

integer values and a string

1 function driver()
2

3 name = 'Joe Bfstk';
4 month = 'August';
5 day = 23;
6 year = 2025;
7 fprintf('Hello %s!\n', name);
8 fprintf('It is %d %s %d\n', day, month, year);
9

10 end

1 >> driver()
2 Hello Joe Bfstk!
3 It is 23 August 2025
4

5 >>

A common method to attempt to align text is to add spaces

within the string in the formatting of the fprintf function. It

may work but is awkward. It also tends to fail when the size

of the values being printed change from run to run.

Alternatively, the width parameter when printing strings of

text can be a useful technique for aligning columns in a table.

An example of this is in figure 4.18

Figure 4.19: Printing a table header

using string literals

1 function driver()
2

3 fprintf('\n');
4 fprintf('%15s%20s%20s\n', 'Trial', 'Voltage', '

Power');
5 fprintf('\n');
6

7 end

1 >> driver()
2

3 Trial Voltage Power
4

5 >>

In this example, the three strings on the right of the comma

are actually variables, but are hard coded into the fprintf
function parameters as literals. When the program is run, the

literal is printed in the space that is reserved for it with the

%s. You could have also assigned the text to a variable and
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used the variable in the fprintf statement as was done in

figure 4.19. Note
When printing a floating point

value, the printed value is rounded

using the standard rounding rules.

Most of the variables printed are not integers or text, but are

floating point values. Recall this means the value has a

fractional part; what we usually think of as a decimals or

values to the right of the radix (the decimal point).

To format a floating point value you enter the width and the

precision separated by a period.

1 fprintf('%w.pf', floating_variable);

Figure 4.20: Syntax for reserving

a total of w spaces and p decimal

places for for a floating point value

In this method, the value in w is the total number of spaces

reserved for the value. This includes the decimals. p is the

precision - or the number of decimal places.

1 function driver()
2 % DRIVER driver() is the main or driver function
3

4 % Assign data to all variables
5 trial1 = 42;
6 volt1 = 109.74652;
7 power1 = 203.93287;
8 trial2 = 43;
9 volt2 = 73.29876;

10 power2 = 12.30842;
11

12 % Print the values as a formatted table
13 fprintf('\n');
14 fprintf('%15s%20s%20s\n', 'Trial', 'Voltage', 'Power');
15 fprintf('%15d%20.2f%20.2f\n', trials, volt, power);
16 fprintf('\n');
17

18 end

1 >> driver()
2

3 Trial Voltage Power
4 42 109.75 203.93
5 43 73.30 12.31
6

7 >>

Figure 4.21: Printing strings, decimals, and floating point values

By adjusting the width, it is possible to get the values in each

printed line to align on the decimal points.
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Escape Sequences
There is an additional item of text in the fprintf formatting

string. It is the \n, what we earlier described as the command

to force a new line when printing. This is known as an escape
sequence.

Table 4.5: EscapeSequences

Format

Character Action

\n Force a new line

\r Carriage return

\t Tab over the print to the next

stop

\b Move back a space

” Print a single quote - ’

"" Print a double quote - ”

%% Print the percentage symbol -

%

Escape sequences address the issue of printing a character

that if you had entered the actual keystroke would have been

interpreted differently. For example, the enter or return key on

the keyboard moves the cursor to the next line. When you

press it while writing a program, the program would move to

the next line. This would not put the new line in the print

statement, but would actually result in a syntax error since

the formatting string would have stopped before the closing

quote.

Figure 4.22: The author’s manual

typewriter that he took to college

in 1979

To resolve this, programs use escape sequences for the

different non-enterable characters. The list of the common

escape sequences are in table 4.5.

Most escape sequences are self-explanatory. The \n is the

newline code and causes the printing to move the next line.

Since the fprintf function does only what is within the

formatting string, if the newline was omitted the printing

would stop at the last character. The next print statement

would then start on the same line. Ending the formatting

string with \n forces the cursor to move to the start of the

next line - in effect preparing it for the next print statement.

There is a second, similar, escape sequence. The carriage

return \r. The carriage return is from the old manual

typewriter days. The mechanism upon which the paper

rested and where the keys struck the paper was called the
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carriage. When a typist neared the end of a line, they would

push the carriage back to the beginning to start the next line -

thus carriage return. Originally the carriage return did not

move to a new line but reset to the beginning of the same line.

To move to a new line required two commands. Since it is

rare in printing to not move to a new line the carriage return

escape sequence included the newline. Having two, \n and \r

, are redundant but usually still included. The new line

escape sequence, \n, is more commonly used.

Another useful escape sequence is the tab \t. Again, a hold

over from the old manual typewriters. A typist would set a

series of tab stops across the length of the page. By pressing

the tab key on the typewriter the platen would move so the

next key strike would be at the next tab stop. On the

computer the tab stops are set a fixed amount across the

screen or the paper. Each time the fprintf encounters a \t

moves to the next tab stop. Warning
The tab escape sequence does not

always move the cursor over the

same number of spaces. It moves

the cursor to the next tab stop.

This means it could space over any-

where from one to whatever the

tab stop spacing. Because of this

when used alone, it may not be a re-

liable means of aligning data. But

can be effective when combined

with the width and precision mod-

ifiers.

The \t works the same way. When the computer encounters a

\t in the formatting string it moves the cursor to the next tab

stop. While the tap escape sequence is often used to format

data so values align on the decimal point, if the width of the

numbers vary widely the tab stop issue often disrupts the

alignments. Setting the width is usually a better approach.

While there are many other escape sequences but there are

three that are especially useful. Although they may not be

specifically escape sequences - because they do not start with

the backslash - the single and double quotes, and the percent

sign are still needed when printing but are used for other

purposes in the fprintf function.

The issue with quotes is that they are already used to start

and end a formatting string or a literal. If you use only one

quote, MatLab will interpret that as the end of the formatting

string. Instead you repeat the quote twice. Since the percent

symbol is used to indicate the start of value, the same

approach is used to enter the percent sign.

Now that we know how to get the information out of a

program, the efficient programming approach is to

implement the calculations. But that was covered earlier in

the interactive approach. That means we need to address

getting the data into the program.
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1 function driver()
2 % DRIVER driver() is the main or driver function
3

4 % Demonstrate escape sequences for quotes and percentage symbol
5 fprintf('\n');
6 fprintf('Don''t use a single quote or a single %% sign\n');
7 fprintf('\n');
8

9 end

1 >> driver()
2

3 Don't use a single quote or a single % sign
4

5 >>

Figure 4.23: Printing quotes and the percent symbol

4.4 Entering data into the program

Turning data into information requires data, that is any

inputs. This can be done in two ways; by hardcoding the

values directly into the program, and by having the user

enter the data at runtime

4.4.1 Hard coding data

When developing the program it is a time saver to hard code

the data directly into the variables that will be used.

Not only will this eliminate the need to constantly enter the

data into the program for each variable in the calculations, It

will also create a consistent set of inputs. Since you can hard

code the inputs from the hand calculation, the results that

should print are already known. If what prints is different,

then there must be a logic error. Catching these errors at this

stage is far easier than searching for them at the end.

4.4.2 Input Function

Hard coding data is useful, especially for constants that are

used throughout the program. But they would require the

user to edit the script each time the data changes. Instead a

method for having the user enter data at runtime is necessary.

This is done using the input function.
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1 function driver()
2 % DRIVER driver() is the main or driver function
3

4 % Hard Coded Data
5 dist = 420;
6 fuel = 10.0;
7 eff = dist ./ fuel;
8

9 fprintf('\n');
10 fprintf('%15s%20.1f miles\n', 'Distance: ', dist);
11 fprintf('%15s%20.4f gallons\n', 'Fuel: ', fuel);
12 fprintf('%15s%20.1f mpg\n', 'Efficiency: ', eff);
13 fprintf('\n');
14

15 end

1 >> driver()
2

3 Distance: 420.0 miles
4 Fuel: 10.0000 gallons
5 Efficiency: 42.0 mpg
6

7 >>

Figure 4.24: Hard Coding Inputs

There are two forms for the input function depending upon

whether the user will be entering a numerical values - either

a floating point value or an integer - or entering a string of

text. When entering a numerical value the input function is

called as shown in figure 4.25. The variable prompt is usually

a string of text, but it does not have to be hard coded into the

input function. It could be text stored in a variable.

Hardcoding the input data in a model is useful when

developing the model. This saves the time of reentering the

same values each time the program is run. Further, since the

hand solution would have used these same inputs, it is easier

to determine if the developing program has any logic errors.

This was shown in figure 4.24.

1 variable = input(prompt);

Figure 4.25: Syntax of the input
function for entering a floating

point value

But once the program is working and the solution - at least

for the single set of inputs - is known to be correct, these hard

coded variables should be replaced with calls to the input

function as in figure 4.26
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1 function driver()
2 % DRIVER driver() is the main or driver function
3

4 % Enter the data for the model
5 dist = input('Enter distance driven (miles): ');
6 fuel = input('Enter fuel purchased (gallons): ');
7

8 % Calculate fuel efficiency
9 eff = dist ./ fuel;

10

11 % Print the results
12 fprintf('\n');
13 fprintf('%15s%20.1f miles\n', 'Distance: ', dist);
14 fprintf('%15s%20.4f gallons\n', 'Fuel: ', fuel);
15 fprintf('%15s%20.1f mpg\n', 'Efficiency: ', eff);
16 fprintf('\n');
17

18 end

1 >> driver()
2

3 Enter distance driven (miles): 380
4 Enter fuel purchased (gallons): 12.3084
5

6 Distance: 380.0 miles
7 Fuel: 12.3084 gallons
8 Efficiency: 30.9 mpg
9

10 >>

Figure 4.26: Entering Numerical Data Using the Input Function

Using the input function as show in figure 4.25 assumes the

user is entering a numerical value - a float or an integer. In

fact, whatever character is entered is converted from the

characters to a numerical value. But if the user mistakenly

enters a character or a string of text the interpreter throw an

exception and print an error message. To correct this the

input function call must indicate that the data to be entered is

not numerical but is instead text. This is done by adding the

modifier ’s’ to the input function.

Figure 4.27: Syntax of the input
function for entering a string of

text

1 variable = input(prompt, 's');

Numerical inputs are limited by white space. This means that

if the user attempts to enter several numbers separated with

commas or spaces between them the interpreter will give an

error. But strings of text allow non-numerical characters such
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as symbols or spaces.

1 function driver()
2 % DRIVER driver() is the main or driver function
3

4 % Enter data as a string of text
5 name = input('Enter your name: ', 's');
6

7 % Print the results
8 fprintf('\n');
9 fprintf('Welcome, %s!\n', name);

10 fprintf('\n');
11

12 end

1 >> driver()
2

3 Enter your name: Joe Bfstk!
4

5 Welcome, Joe Bfstk
6

7 >>

Figure 4.28: Entering A String of Text Using the Input Function

4.5 Summary

At its lowest level, a program in an interpreted programming

language can be run interactively. The means entering the

executable commands one at a time at the command line.

While effective this approach is time consuming but also

lacks repeatability. Writing a script will alleviate this. A script

in an interpreted language is a text file with each command

written in the order in which it is to be executed.

In its most simple form, each program consists of three

sequential parts; creating the input data, computing using

the data, and printing or returning the results or the

information. An effective approach to writing the script is to

create variables with fixed input and output values. From

there you create the outputs.

Printing the results uses fprintf with the appropriate

formatting string. Once the output is working, the next step is

create the computational part of the program with the fixed

values in the input variables. Finally, the inputs are created.

These are often done using the input function.
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4.6 Self Test

1. What is the order of operations in arithmetic?

2. What is the result of the following line of code?

𝑦 = 4 .∗ 4 ./2 + 1

3. What is the result of the following line of code?

𝑦 = 4 .∗ 4 ./(2 + 1)

4. What is the result of the following line of code?

𝑦 = 2 .∧ 3 .∗ 2 + 16 ./4 .∗ 2

5. What is the result of the following line of code?

𝑦 = 2 .∧ 3 .∗ (2 + 16) ./4 .∗ 2

6. What does the command isvarname do?

7. What does the command iskeyword do?

8. What is echoing?

9. How is echoing implemented?

10. What does the disp function do?

11. How are integers and floating point values different?

12. What is precision?

13. What is a formatting string?

14. What is the formatting string for printing an integer? A

floating point value? A string of text?

4.7 Projects

1. Write a script that uses fprintf with the appropriate

formatting to print Hello World! on the screen.

2. Write a script in which the user enters two values that

are stored in the variables x and y. It then calculates the

mean

𝑚 =
𝑥 + 𝑦

2

It prints two lines of output. For example, if the user

enters 10 and 20, the program prints

X Y Mean

10.00 20.00 15.00

3. Write a script in which the user enters two values that

are stored in the variables x and y. It then calculates the
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root-mean-square

rms =

√
𝑥2 + 𝑦2

2

It prints two lines of output. For example, if the user

enters 10 and 20, the program prints the result

formatted to two decimal places as

X Y RMS

10.00 20.00 15.81

4. Write a script in which the user enters the temperature

in degrees Fahrenheit and it converts it to degrees

Celsius. The transformation formula is

◦𝐶 =
5

9

(◦𝐹 − 32)

The temperatures should be formatted to show two

places of precision. A sample output might be

47.00 degrees F = 8.33 degrees C

5. Write a script in which the user enters the temperature

in degrees Celsius and it converts it to degrees

Fahrenheit. The transformation formula is

◦𝐹 =
9

5

◦
𝐶 + 32

The temperatures should be formatted to show two

places of precision. A sample output might be

27.00 degrees C = 80.60 degrees F

6. A force F acting on a body can be decomposed into its 𝑥

and 𝑦 components. This requires the use of the sine

and cosine functions;

𝐹𝑥 = 𝐹 cos(𝜃)

𝐹𝑦 = 𝐹 sin(𝜃)

In MatLab, the functions sind(angle) and cosd(angle)
will return the value of the sine and cosine where angle
is a variable storing the the angle in degrees the force

makes at the point.

Write a script in which the user enters two variables;

the force F and an angle angle in degrees. It then

calculates the decomposition of the force in the 𝑥 and 𝑦

directions. The output should be a table formatted to

two decimal places such as
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F Angle Fx Fy

100.00 30.00 86.60 50.00

7. A projectile is launched from the ground at an angle 𝜃
with an initial velocity of 𝑣0 m/s. The time until it hits

the ground is

𝑡 𝑓 =
2(𝑣0)𝑦

𝑔

where (𝑣0)𝑦 = 𝑣0 sin(𝜃) and 𝑔 = 9.81 m/sec
2

is the

acceleration due to gravity.

Write a script in which the user enters the initial

velocity and the initial angle, and the program

calculates the time until impact. The output should be a

table formatted to two decimal places such as

Velocity Angle Impact

(m/sec) (Degrees) (sec)

50.00 60.00 8.83

Do not use 9.81 directly in the calculation, but create a

variable g and set it to the constant 9.81.

8. Three forces are acting at a point at a point. The first is

a force of 𝐹1 acting at an angle of 𝐴◦
. The second is a

force of 𝐹2 acting at an angle 𝐵◦
. The third is 𝐹_3 acting

at an angle 𝐶◦

Write a MatLab program that that analyzes the

individual forces and calculates the resultant force. In

particular decompose each force into its 𝑥 and 𝑦

direction components. Then calculate the resulting 𝑥

and 𝑦 components of the resultant force by summing

the

component forces. Finally, calculate the overall

resultant force and the angle that it would make as a

single resultant force.

Have the user enter the three forces, 𝐹_1, 𝐹_2, and 𝐹_3,

and the angles that each of these make on the beam, 𝐴◦
,

𝐵◦
, and 𝐶◦

. These are all scalar values.

The formulae for decomposing the angles are

𝐹1𝑥 = 𝐹1 cos (𝐴) 𝐹1𝑦 = 𝐹1 sin (𝐴)

𝐹2𝑥 = 𝐹2 cos (𝐵) 𝐹2𝑦 = 𝐹2 sin (𝐵)

𝐹3𝑥 = 𝐹3 cos (𝐶) 𝐹3𝑦 = 𝐹3 sin (𝐶)

𝐹𝑅𝑥 = 𝐹1𝑥 + 𝐹2𝑥 + 𝐹3𝑥 𝐹𝑅𝑦 = 𝐹1𝑦 + 𝐹2𝑦 + 𝐹3𝑦

𝐹𝑅 =

√
𝐹2

𝑅𝑥
+ 𝐹2

𝑅𝑦
𝐷 = tan

−1

(
𝐹𝑅𝑦

𝐹𝑅𝑥

)
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In Matlab, the command to calculate the trig functions

for an angle A is sind(A) and cosd(A). The inverse

tangent is D = atand(y./x);
Your program should print the three forces and their

angles with the two component forces for each. You

will also print the the two components of the resultant

force, the overall resultant force and its angle, 𝐷.





Procedural Programming 5
A place for everything and everything in its
place

Reverend Charles Augustus Goodrich

Many of us approach programming in the same way we

approached high school composition - despite everything our

teachers told us.

We were told when writing a composition you begin by

brainstorming your ideas. From there you create a basic

outline of the main topics you would like to cover. You make

this outline more detailed by adding subtopics and

sub-subtopics. When you have the paper thoroughly outlined

- and only then - you write the first draft - by hand. You edit

and reedit the drafts until you are comfortable with the

current draft. At that point - and not before - you start up the

computer and begin typing the final copy.

What do we as programmers - as well as every first semester

composition student - actually do? You have a paper to write

so you open a new file on the computer and you start typing.

You proofread it - mainly for spelling and typos - on the

computer. You print it and turn it in.

How does this relate to programing? When we have a task in

which we think a computer program would be an effective

problem-solving method we tend to start up the computer

and start writing code. We do not plan the program. We do

not brainstorm or create flow charts. We simply start at the

first line and work until the last line.

We can be much more effective and efficient in our coding if

we plan out the program. But how do we plan a program?

5.1 Top-Down Design
Big Fleas have little fleas upon

their backs that bite ’em. And little

fleas have lesser fleas and so ad-

infinitum.

Any task can be overwhelming when we only think of getting

to the final result. But the reality is that all tasks actually

consist of several smaller tasks each of which are more simple

when addressed individually. An example is graduating

from college.
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As an example, every engineering student shares a common
goal. To receive a degree in engineering. But how do we
accomplish this?
Instead of thinking only of the final goal, break the task down
into several smaller tasks. In this case graduating with degree
in engineering can accomplished by successfully complet-
ing four tasks; successfully complete year one; successfully
complete year two; successfully complete year three; and
successfully complete year four.
The four subtasks do not explain how to perform the task just
what has to be done. Instead we will select one and look at it
in more depth - Successfully complete year two. And while
you are in your second year there is no reason to be working
on tasks that involve year three or year four.

Earn a Degree in

Engineering

Year One Year Two Year Three Year Four

Fall Spring

Dynamics

Differential

Equations
Computer

Programming

History

Technical

Writing

Figure 5.1: Hierarchical Chart for Earning an Engineering Degree.

Further, year two has a Fall and a Spring semester. If it is
Spring you have five courses. At any single moment of the
semester there is only one class for a particular course that
we should be attending.

This is basis of top-down design; each task is broken down into

the set of subtask that when combined complete the larger

task. The subtasks are then broken down into the set of tasks

that when completed will have completed the individual

subtask. This is repeated until each item is trivial.
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The diagram for earning an engineering degree in figure 5.1

is known as an hierarchical chart. It is a means of breaking

down a task into all of its subtasks. It shows that while there

may be a multitude of tasks that will have to be completed, at

any single moment there is only one that is active at any

given moment.

Top-down design provides a means to compartmentalize

these processes so that we can plan what tasks will need to be

done.

5.1.1 Hierarchical Chart

A means of planning the top-down design involves creating

an hierarchical chart. The hierarchical chart is similar to a flow

chart. But unlike a flow chart where the items show the

sequence of steps that will be followed, the hierarchical chart

lays out each task and its subtasks. It does not provide the

order of running the tasks but instead it provides a means of

planning and identifying the tasks that will have to be done.

Program

Task 2Task 1 Task 3

Task 1.1 Task 1.2 Task 3.1 Task 3.2

Figure 5.2: Hierarchical Chart for Top-Down Programming.

An hierarchical chart is beneficial in any project management

- it is actually similar to a PERT (Project Evaluation and Review
Technique) diagram. Our interest is using it to implement

top-down design to simplify programming an algorithm, and

in the end making the process more efficient. Hierarchical Chart
An hierarchical chart is a diagram

in which each task is broken down

into the smaller subtasks that com-

prise it.

In creating the hierarchical chart the program - or the project -

is the lead task. From there and engineer would divide the

program into the set of unique, or non-overlapping, tasks

that will complete the project. Each of these would then be

divided again into the next set of unique subtasks when

completed will satisfy the task directly above it. Once every

subtask is defined, the hierarchical charts can be used to
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create a flow chart by determining the order and

dependencies for each task.

While the hierarchical chart is a useful tool for any project

management, it is just as useful in creating an algorithm and

thus a program. In this application each of the tasks will be

functions.

5.1.2 Functions

While different programming languages call them by

different names - such as methods, subroutines, or

procedures - functions are the implementation of top-down

design. Regardless of the name their purpose is the same. A

function performs some specialized task in a program.Function
A set of code that performs a par-

ticular task. The purpose of functional programming, or what is often

called procedural programming, is that it enables us to use

top-down design to simplify programming.

In a small way, we have already been writing functions in our

programs. The program itself is a function. It performs all of

the tasks that we want the program to perform. There is not

much reason to think of a program as a single function, but to

implement top-down design we will now need to so. Instead

of the entire program in one function, we will now consider

the lead, or main, function as a driver of the rest of the

program. Our goal will to eliminate all of the details from

this function and instead let it act as a project manager;

calling each function when it is needed and doing only the

most basic computing itself.Named Function
An important aspect of the driver

function in MatLab is that the

name of the function is the same as

the name of the script file. Thus we

may also call it a named function.

This analogy of driver as project manager lends itself to a

flow chart, figure 5.3, of the program from the perspective of

the driver. All that the driver does is call other functions.

Taking the executable details of the program away from the

driver will provide additional benefits. A program will now

consist of multiple functions that

▶ can be divided between many members of a

development team. Each member might be responsible

for only one function but when all joined into the

program will provide the needed functionality.

▶ can be used multiple times. If a function only performs

a single task, but that task is needed multiple times it

only needs to be coded once.
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Start

Call Input

function

Call function One

Call Function Two

Call Function n

Call Output

Function

End

Figure 5.3: Flow Chart for the

Driver as Project Manager

▶ can be easily revised. It often occurs that a function will

be have to be updated. When this occurs only a single

portion fo the program will have to be changed. Function Calls and Definitions
It is important to differentiate

between the function call and the

function definition.

• Function Call

To use a function you need

to call it. The function call

is a single line with the

function handle, a set of of

input variables, and a set of

output variables.

• Function Definition

The function definition is

the list of instructions or ex-

ecutable statements that are

run when the function is

called. For a local function it

will start with the keyword

function and finish with the

keyword end.

▶ can be more easily debugged. Since each function

performs only a single task it will by its nature be a

much smaller part of the program. If there is an error in

it then the error is likely to be more easily found and

corrected.

The functions that we will be using can be separated into two

types; built-in functions and user-defined functions.

5.2 Built-In Functions

Luckily for us there are a multitude of functions that are built

into MatLab. We could not print without disp( ... ) or fprintf(
... ). We could not enter data into the program without input(
... ). And without sqrt( ... ) we would have to write our own

code to calculate the square root of a number. These are

examples of built-in functions. Function Call
A function call is a program state-

ment that passes control of the

program over to a subprogram, or

function. The function then per-

forms a task and returns control

to the point in the program from

which the function was called.

5.2.1 Function Calls

In MatLab, implementing a built-in function is done by

making a function call as in figure 5.4. The function call has

three parts; the function name, the list of output variables,

and the list of input parameters.
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The output variable list and the input parameter list are

optional. If the function does not return values to its driver

function then there is no need for the output variables.

Similarly, if the function does not require the driver to pass

data to it for it to operate then there is no need for the input

parameters. It is important that the parentheses be included

even if the function does not require input data. Built-in

Figure 5.4: Syntax of a Function

Call

1 % Syntax of a MatLab Function Call
2 [output vars] = function_name(input vars);

functions can be called directly from the command line in the

same way that calculations can be done from the command

line. The date( ) function does not require inputs or outputs

so it can be called directly. Computational functions will

Figure 5.5: Calling the date( ) func-

tion from the command line

1 >> date( )
2

3 ans = 24-May-2019

more often have both inputs and outputs. As with simple

Figure 5.6: Calling output variable
= sqrt(input parameter) from the

command line

1 >> x = sqrt(42.0)
2 x =
3 6.4807
4 >>

calculations, function calls from the command line can be

convenient but their value is in how they are run from a

script.

1 function driver( )
2 % DRIVER driver( ) is the main or driver function for the program
3

4 % Enter data
5 x = input('Enter the value for the square root: ');
6 s = sqrt(x);
7 fprintf('sqrt(%0.3f) = %0.3f\n', x, s);
8

9 end

1 >> driver()
2

3 Enter the value for the square root: 42
4 sqrt(42.000) = 6.481

Figure 5.7: Calling output var = sqrt(input par) from a script
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5.2.2 Built-In Functions

MatLab has built-in functions that address many calculations.

The basic trigonometry functions are listed in table 5.1. There

Function Example Description

sin y = sin(radians) Sine of argument in radians

cos y = cos(radians) Cosine of argument in radians

tan y = tan(radians) Tangent of argument in radians

sind y = sind(degrees) Sine of argument in degrees

cosd y = cosd(degrees) Cosine of argument in degrees

tand y = tand(degrees) Tangent of argument in degrees

asin radians = asin(y) Inverse sine in radians

acos radians = acos(y) Inverse cosine in radians

atan radians = atan(y) Inverse tangent in radians

asind degrees = asind(y) Inverse sine in degrees

asind degrees = acosd(y) Inverse cosine in degrees

atand degrees = atand(y) Inverse tangent in degrees

hypot c = hypot(a, b)

Square root of the sum of squares

(Pythagorean Theorem)

Table 5.1: Trigonometric Functions

is also a set of general algebraic functions in table 5.2. With

the exception of the hypot function the input for each of these

is a single value and each return a single value as well.

Function Example Description

exp y = exp(x) Base 𝑒 exponential, 𝑦 = 𝑒𝑥

log y = log(x) Natural logarithm

log10 y = log10(x) Common logarithm (Base 10)

log2 y = log2(x) Base 2 logarithm

pow2 y = pow2(x) Base 2 power

sqrt y = sqrt(x) Square root

abs y = abs(x) Absolute value

Table 5.2: Algebraic Functions

Overloaded Function
An overloaded function is a func-

tion that while having a single

function name performs different

tasks depending upon the func-

tion signature.

But functions are often multivariate. The hypot function is an

example. When called the program passes two values to the

function representing the shorter two legs of a right triangle.

The function calculates the length of the third side - the

hypotenuse - and returns that value to the driver.

It is possible for a function to return more than one value.

The conversion functions in table 5.3 have several functions

that return two and even three values.

There are two functions in table 5.3 that appear twice;

cart2pol and pol2cart. These are overloaded functions;

functions that have the same function name but depending

upon the its function signature it does a different calculation

or performs a different task. Each function has a unique
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1 function driver()
2 % DRIVER driver( ) is the main or driver function for the program
3

4 % Enter data
5 x = input('Enter the first leg: ');
6 y = input('Enter the second leg: ');
7 z = hypot(a, b);
8 fprintf('The right triangle has sides %f, %f, and %f\n', x, y, z);
9

10 end

1 >> driver()
2

3 Enter the first leg: 4
4 Enter the second leg: 3
5 The right triangle has sides 4.000, 3.000, and 5.000
6 >>

Figure 5.8: Passing two values to a multivariate function

Table 5.3: Conversion Functions

Function Example Description

deg2rad d = deg2rad(r) Convert angle from degrees to radians

rad2deg r = rad2deg(d) Convert angle from radians to degrees

cart2pol [theta rho] = cart2pol(x, y) Transform Cartesian coordinates to polar or cylindrical - 2D

cart2pol [theta rho z] = cart2pol(x, y, z) Transform Cartesian coordinates to polar or cylindrical - 3D

cart2sph [azimuth elevation r] = cart2sph(x, y, z) Transform Cartesian coordinates to spherical

pol2cart [x y] = pol2cart(theta rho) Transform polar or cylindrical coordinates to Cartesian - 2D

pol2cart [x y z] = pol2cart(theta rho, z) Transform polar or cylindrical coordinates to Cartesian - 3D

sph2cart [x, y, z] = sph2cart(azimuth, elevation, r) Transform spherical coordinates to Cartesian

signature consisting of the function name and the number of

input parameters.

The number of output variables listed is the maximum

number that can have values be returned from the function.

It is possible to return fewer - or even zero - but the result

may not be as expected. The function itself determines theFunction Signature The function

signature is a unique representa-

tion of the function call that in-

dicates which function should be

executed.

number and type of values to return. It could be that a single

variable in the output list could return a single value, or it

could return a vector with multiple values, or could just

result in a run time error.

Because of this, unless you know how the function will

respond it is best to have the same number of variables as the

function is designed to return.

While returning fewer values is useful, there is an issue. You

cannot pick and choose which value to return. If you want the
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1 function driver()
2 % DRIVER driver() is the main or driver function for the program
3

4 % Enter data
5 x = input('Enter the x coordinate: ');
6 y = input('Enter the y coordinate: ');
7

8 [theta, radius] = cart2pol(x, y);
9

10 fprintf('\t\t(x, y)\t\tradius\t\tangle (rad)\n');
11 fprintf('\t(%0.2f, %0.2f) %10.2f %10.2f\n)', x, y, theta, radius);
12

13 end

1 >> driver()
2

3 Enter the x coordinate: 4
4 Enter the y coordinate: 3
5 (x, y) radius angle(rad)
6 (4.00, 3.00) 5.00 0.64

Figure 5.9: Returning multiple output values

first only then you only need a single variable on the left of

the assignment operator. But if you only want the second you

must have two variables within the square brackets on the left.

If you have only one - and even if you name with the second

variable - it will receive the value in the first return variable. Warning
If you use fewer values than what

is shown in the return variable list

you may get unexpected results.

Unless you know how it the func-

tion handles this it is best to pro-

vide variables for all of the return

values.

5.2.3 Finding an appropriate built-in function

With the thousands of built-in functions that are available

how do you 1. know what functions are available, and 2.

know how to use the function?

MatLab provides you with many functions that are meant to

be called from the command line, as compared to being

coded into a script. Because of the way that they are

commonly used these functions are usually given the

moniker commands instead of functions. Two of these system

command can help with finding and using built-in functions.

They are lookfor and help. lookfor
lookfor is a system command that

searches the function help files for

a particular keyword.Searching for a function

With the thousands of functions that are available how might

you find the one that you need? lookfor is a system
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command for searching for a functions.

Figure 5.10: Syntax of the lookfor
command

1 % Syntax of the lookfor command
2 >> lookfor keyword

Each built-in function contains a block of comments that are

intended to provide help to the programming. The lookfor
command functions by searching these help files for the

keyword that you entered. If it finds the keyword then it

returns the function name in which it was found and also a

short description of the function (figure 5.11).

1 >> lookfor cosine
2 acosd Compute the inverse cosine in degrees for each element of X.
3 cosd Compute the cosine for each element of X in degrees.
4 acos Compute the inverse cosine in radians for each element of X.
5 acosh Compute the inverse hyperbolic cosine for each element of X.
6 cos Compute the cosine for each element of X in radians.
7 cosh Compute the hyperbolic cosine for each element of X.
8 >>

Figure 5.11: Example of the lookfor command

Help with a function

The lookfor command will provide you with a list of possible

functions but it does not tell you how to implement the

function in your script. What input parameters does it

require? What are the outputs values? These can be found

using the help command.

Figure 5.12: Syntax of help com-

mand

1 % Syntax of the lookfor command
2 >> help function name

As an example, figure 5.13 shows the use of the help
command for the exponential function, 𝑒𝑥 .

The built-in functions are a feature of the top-down design in

MatLab but there purpose is not so much to break tasks down
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1 >> help exp
2 exp Exponential.
3 exp(X) is the exponential of the elements of X, e to the X.
4 For complex Z = X+i*Y, exp(Z) = exp(X) * (COS(Y)+i*SIN(Y)).
5

6 See also expm1, log, log10, expm, expint.
7

8 Reference page exp
9 Other functions name exp

Figure 5.13: Example of the help command

5.3 Local Functions
“If you want it done right, do it

yourself.”

Napolean BonaparteDespite there being hundreds of built-in functions, and

probably hundreds of thousands more that can be found in

repositories, there is a need to be able to write your own. Local Function
A local function is a user defined

function that is written outside of

any other function. It can be called

by any other function in the same

script.

Top-down design demands that the program be broken

down into a finite number of trivial tasks. These are not just

tasks for which someone else has already written a

function.These include specialized printing functions.

Functions to perform inputs and error check those inputs.

And most often, functions that simply perform some small

set of calculations. It often makes sense to hide away the

details of these functions and instead just use a function call. Warning A common error in writ-

ing local functions is to embed

them within another function. It is

necessary that the entire local func-

tion, from the keyword function
to the keyword end be completely

outside of any other function. This

includes the driver.

The most common type of the do-it-yourself function is a

local function. This is a function whose function definition

takes a form similar to that of the driver function. But the

local function definition is written outside of the driver

function or any other local function. Because of the

importance of their being separate from all other functions, a

common approach is to write each one after the current final

keyword end of every other function.

A local function will have two parts; a function call and a

function definition. The function definition is the set of

executable statements for the function. It will take the same

format as the driver function but must be completely outside

of any other function.

Output Variables

The local function is very similar to the driver function that

we have been using from the start. It begins with the keword
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function and concludes with the keyword end. On the first

line, after the keyword function on the left side of the

assignment operator is the list of output variables. There does

not have to be an output variable and there is no upper limit

to the number used. If there is not a return variable then it,

and the = are omitted. This is the usual case in the driver

function. If there is more than one then they listed separated

by either commas or a space within a pair of square brackets.

Figure 5.14: Syntax of a local func-

tion

1 function [output vars] = function_handle(input vars)
2 % Help comments for the local function
3

4 % Operations for the local function
5

6 end

Function Handle
Function Handle
The function handle creates an as-

sociation to the function. While it

looks like variable name, the func-

tion handle is a structure that in-

cludes information about the func-

tion. This includes the function

name, the type of function, and

the file in which the function is

written.

Following the output variable list is the function name or

what is known as the function handle. The function handle is

not a variable or simply a name but is in fact a structure. Each

item in the structure contains information about the function

including its name, type of function, and the file, if any, in

which the function is written. This is information is available

by calling a function called functions. You can do this from

the command line as in figure 5.15.structure = functions(@f) The

built-in function functions returns

the details of the function handle

that is passed to the function. This

includes function name, the type

of function - whether built-in, local

(scoped), nested, or anonymous,

the file in which the function is

stored, and the parent function for

the function.

The function handle makes is possible to pass a function to

another function as in input (section 5.6). The naming

convention for a function handle is the same as it is for

variables.

Figure 5.15: Example of the func-

tions command

1 >> functions(function_handle)
2

3 function: 'function_handle'
4 type: 'scopedfunction'
5 file: 'functionsExample.m'
6 parentage: {'driver'}

Input Variables

The third, and final part of the first line of a local function is

the input variable list.
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The input parameters are a comma delimited list of variables

that will be receiving data from the driver. They are not,

however, the variables from the driver. Instead they are new

variables that are created when the function is called. They

receive a copy of the value in the variables in the driver. Input Variables The input vari-

ables do not currently exist but will

be created when the local function

is called. The values in these vari-

ables are copies of the values in

the variables in the function call.

There are no limits on the number of input variables. You

may create local functions that have no input variables, or

hundreds of variables, or any number in between. Figure 5.16

shows a local function with two input parameters.

1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Input data
5 x = 5;
6 y = 3;
7

8 % Call the local function
9 z = local_function(y, x);

10

11 % Print the results
12 fprintf('%0.3f .^ %0.3f = %0.3f\n', x, y, z);
13

14 end
15 % All local functions are written outside the driver
16 function r = local_function(base, power)
17 % LOCAL_FUNCTION r = local_function(s) is an example of a local
18 % function.Two values are passed in and one is returned
19

20 % Calculate the value of r
21 r = base.^(power);
22

23 end

1 >> driver( )
2 3.000 .^ 5.000 = 243.000
3 >>

Figure 5.16: Example of a local function

Comment It is not necessary that

the variable names in the input

parameter list be the same as the

variables in the function call. It is

often recommended that you pro-

vide different variable names for

these variables to differentiate be-

tween the variable in the function

call and the variable in the local

function.

While most local functions are intended to perform

specialized calculations, they are also used for customizing

inputs and outputs.

Output functions are local functions that print. It could be

printing descriptions as we will see in the print_header
function, or printing the results of calculations.

Input functions are the opposite. They enable the user to

enter data into the program. This could be as simple as
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calling input or they could be designed to collect data from

equipment, sensors, or network servers. Input functions will

often include error checking to ensure the data being used in

the program meets the proper criteria or constraints.

Output Functions

An output function is a type of local function that prints but

does not actually return a value. A common example is a

splash screen function (figure 5.17).

1 function driver()
2 % DRIVER driver( ) is the main or driver function
3

4 % Print the Splash Screen
5 print_header();
6

7 end
8 % All local function definitions are written after the driver
9 function print_header()

10 % PRINT_HEADER print_header() prints start up information
11

12 % Print the splash screen
13 fprintf('\n');
14 fprintf('This is the Splash Screen \n');
15 fprintf('It acknowledges the programmer, and provides \n');
16 fprintf('distraction while the program is loading\n');
17

18 end

1 >> driver()
2

3 This is the Splash Screen
4 It acknowledges the programmer, and provides
5 distraction while the program is loading
6 >>

Figure 5.17: Example of a splash screen function

This splash screen function does not receive any inputs or

return outputs. It just prints. We can make a change to it so

that it does receive a set of input parameters and then adjusts

what it prints based upon the inputs. This is a form of

customization that will make the function portable, that is

generalized so that it can be used in many other programs

without any changes. The items that do change are passed to

the function instead of hard coded into it.

In this example, figure 5.18, the splash screen will print the
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programmer’s name, the date, and a short description of the

program. If we copy this function into a different program, all

that we need to do is change the date and description in the

function call. The function definition does not change at all.

1 function driver()
2 % DRIVER driver( ) is the main function
3

4 % Set the inputs to the splash screen
5 name = 'Joe Bfstk';
6 current_date = '28 May 2042'
7 desc = 'Showing off the Splash Screen';
8 % Print the Splash Screen
9 print_header(name, current_date, desc);

10

11 end
12 % All local functions are written after the driver
13 function print_header(n, d, description)
14 % PRINT_HEADER print_header(n, d, desc) prints start up information
15

16 % Print the splash screen
17 fprintf('\n');
18 fprintf('Name: %s\n', n);
19 fprintf('Date: %s\n', d);
20 fprintf('Desc: %s\n', desc);
21 fprintf('\n');
22

23 end

1 >> driver()
2

3 Name: Joe Bfstk
4 Date: 28 May 2042
5 Desc: Showing off the Splash Screen
6

7 >>

Figure 5.18: Splash screen function with input parameters

In this customized version of print_header the data is loaded

into three variables in the driver. The values are then passed

to the function where three new variables are created and the

data from the driver is copied in to them.

This approach, writing a function that is passed data to be

printed while not returning data to its driver is useful for

printing results. By placing all of the output printing together

it can be handled by a single function call while at the same

time being formatted to make all of the output the most

effective for the user.
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1 function driver()
2 % DRIVER driver() is the main function for the program
3

4 % Enter data
5 dist = 400.0;
6 vol = 28.0;
7

8 % Calculate the fuel efficiency
9 lpk = 100 .* vol ./ dist;

10

11 % Print the results
12 print_results(dist, vol, lpk);
13

14 end
15 % Local functions are written after the driver
16 function print_results(d, f, e)
17 % PRINT_RESULTS print_results(d, f, e) prints the outputs
18 % as a formatted table
19

20 % Print the results as a table
21 fprintf('\n');
22 fprintf('Distance: %13.1f km\n', d);
23 fprintf('Fuel: %17.1f liters\n', f);
24 fprintf('Efficiency: %12.2f liters/100 km\n', e);
25 fprintf('\n');
26

27 end

1 >> driver()
2

3 Distance: 425.3 km
4 Fuel: 29.7 liters
5 Efficiency: 6.98 liters/100 km
6

7 >>

Figure 5.19: Example of an output function.

With functions that perform calculations and functions that

are meant to to print, all that is left is a function that is used

for entering data into the program.Abstraction Abstraction is the pro-

cess of reducing the complex na-

ture of a program into smaller, and

hopefully simpler steps. It is done

using top-down design and the

use of functions.

Input Functions

A means of entering data into a program has already been

provided with the built-in function input. This function

prompts the user and then receives the user’s data entry,

storing it in s variable. It differentiates between numerical

data and strings of text. It is, however, limited.
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The input only accepts user entered data - it stops the

execution of the program and waits for the user to type on

the keyboard. It also requires that each time a value is to be

entered it a separate call to input must be made. What if

there are multiple data values to be entered? Or if the data is

being sent from an alternative device such as a sensor or

server, or from a network feed?

If the data is to be user entered, input does not provide any

error checking - an important part of any data entry but

especially so for user entered data. .

An improvement to the input function is to create a wrapper
function. This is a function that might combine multiple calls

to input so several data values can be entered while at the

same time moving the details out of the driver. Not limited to

data entry, their use is to provide abstraction and thus

programming convenience. Wrapper Function A wrapper

function is a function whose pur-

pose is to call one or more other

functions while performing a mini-

mum of computation. It is a means

of abstraction in that the imple-

mentation details are hidden from

the outside.

The wrapper function can be used to combine multiple

inputs into a single function while at the same time

providing error checking all while keep the details out of the

driver. Adding in a wrapper function to the fuel mileage

program is shown in figure 5.20.

As the example progressed we were able to remove details

from the driver and replace them with simple function calls.

By the end the driver did little more than just call other

functions. All the details are handled in the local functions.

This is the abstraction that was described earlier.

Local functions are written outside of the driver function.

This means that the function definition of a local function

may not be within any other function. The are also designed

so they may be called from every other part of the program.

This includes both the driver function - the function with the

same name as the script file - and any other local function.
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1 function driver()
2 % DRIVER driver() is the main or driver function
3

4 % Enter data
5 distance = get_data('Distance driven: ');
6 volume = get_data('Fuel purchased: ');
7

8 % Call function to calculate efficiency
9 lpk = fuel_efficiency(distance, volume);

10

11 % Print the results
12 print_results(distance, volume, lpk);
13

14 end
15 % All local functions are written after the driver
16 function x = get_data(prompt)
17 % GET_DATA get_data(prompt) is a wrapper for input data
18

19 % Call the input function
20 x = input(prompt);
21

22 end

1 >> driver()
2 Distance (km): 400.0
3 Fuel purchased (liters): 29.7
4

5 Distance: 425.3 km
6 Fuel: 29.7 liters
7 Efficiency: 6.98 liters/100 km
8

9 >>

Figure 5.20: Example of a wrapper function

5.4 Nested Functions
Nested Function A function that is

defined completely within another

function is nested within that func-

tion. They are exist, and are thus

callable, from within their parent

function.

There are programming applications in which applying

abstraction suggests that you write a function, but the

function has only a limited use. Perhaps it will only be used

in a single function, or it requires input values that only exist

within a function, or it uses parameters that must be defined

before the function can even be defined. In these cases the

use of a nested function can be useful.

A primary difference between a nested function and a local

function is how it uses variables. Any variable that is created

in the parent of the nested function is available to the nested

function. In a local function only those variables created

within the function are available to the function.
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1 function driver()
2 % DRIVER driver( ) is the main or driver function
3

4 % Enter data
5 r = input('Enter the radius of the polygon (m): ' );
6 % Nested function to calculate area
7 function a = areaPolygon(n)
8 % Area of a regular polygon
9 a = (r.^2) .* n .* sind(360 ./ n) ./ 2.0;

10 end
11

12 % Print areas
13 fprintf('Triangle: %10.2f m^2\n', areaPolygon(3));
14 fprintf('Square: %14.4f m^2\n', areaPolygon(4));
15 fprintf('Pentagon: %10.2f m^2\n', areaPolygon(5));
16

17 end

1 >> driver()
2 Enter the radius of the polygon (m): 5
3

4 Triangle: 32.48 m^2
5 Square: 50.00 m^2
6 Pentagon: 59.44 m^2
7 >>

Figure 5.21: Example of a nested function

This can be seen in the example in figure 5.21. The user enters

the radius of the polygon in the driver. When they call the

area function they pass the number of sides - but not the

radius. The radius, being created before the nested function

in the parent function, is automatically available to the nested

function.

Because of the variable behavior we could write the nested

function with no input variables at all. In fact, there are many

times when this is done. The reason for the nested function is

then a matter of repeatability. If there is a set of code that

needs to be implemented multiple times, but only in a single

function, then a nested function can greatly shorten the

amount of coding that goes into the function.

5.5 Anonymous Functions

There is a third type of function, that while often confused

with nested functions, it is more like a local function. But in

reality. they are really neither. These are anonymous functions.
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Figure 5.22: Syntax of an anony-

moust function

1 function_handle = @(input parameters) expression;

An anonymous function is defined almost as if it were a single

line expression. The difference is the addition of a declaration

of a set of input parameters in the anonymous function.Anonymous Function An anony-

mous function is a single exe-

cutable line of code that is defined

within another function.

As an example, recreate the area of the polygon function but

this time using an anonymous function.

1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Enter data
5 r = input('Enter the radius of the polygon (m): ' );
6 % Anonymous function to calculate area
7 areaPolygon = @(n, r) (r.^2) .* n .* sind(360 ./ n) ./ 2.0;
8

9 % Print areas
10 fprintf('Triangle: %10.2f m^2\n', areaPolygon(3));
11 fprintf('Square: %14.4f m^2\n', areaPolygon(4));
12 fprintf('Pentagon: %10.2f m^2\n', areaPolygon(5));
13

14 end

1 >> driver( )
2 Enter the radius of the polygon (m): 5
3

4 Triangle: 32.48 m^2
5 Square: 50.00 m^2
6 Pentagon: 59.44 m^2
7 >>

Figure 5.23: Example of an anonymous function

In this example, an anonymous function is defined within a

parent function. Once done it is callable from that same

function.

There is an important difference between the nested function

example in figure 5.21 and the anonymous function example

in figure 5.23. It is in the treatment of the two variables r -

radius, and n - number of sides. In the anonymous function

both the radius and number of sides need to be passed to the

function as input paramters. But in the nested function the

radius variable is not passed to the function but instead is

inherited from the parent function. On the surface this

appears to be a minor difference, but it is an important
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difference. The need to do this is the primary difference

between the anonymous function and a nested function.

5.5.1 Anonymous functions or nested functions

Anonymous functions and nested functions share a couple of

similarities. They are both defined within another function.

Because of this they are only callable from the parent

function or any nested or anonymous functions at the same

level. An anonymous function cannot be called from other

local functions in the program. Anonymous or Nested There are

similarities and differences be-

tween anonymous functions and

nested functions.

Similarities

▶ Defined within a parent

function

▶ Callable from the parent.

Differences

▶ Nested functions inherit

variables from the parent

function.

▶ Variables in anonymous

functions must be passed

to the function (encapsula-

tion).

▶ Anonymous functions can

be parameterized.

The difference is one that separates local functions from

nested functions; encapsulation. Recall that a local function

does not have access to variables in other functions while a

nested function has a limited access to the variables that are

declared in the parent function.

Variables in the parent function and variables in the

anonymous functions are hidden from each other. In this way

anonymous functions behave more like a local function. If

you need data in an anonymous function then it must be

passed to the function as an input parameter.

Similarly, any information that is created in the anonymous

function must be returned to the calling function as the

return variable. Since an anonymous function does not have

an explicit return variable like local and nested functions, the

return variable is the result of the anonymous function’s

computation.

5.5.2 Parameters in Anonymous Functions

While an anonymous function does not have direct access to

variables in its calling function, there is an exception. Any

variable that is declared before the anonymous function can

be used as a constant or a parameter in the anonymous

function. These parameters are fixed for the lifetime of the

function. Warning Parameters in an anony-

mous function are fixed when the

function is defined. While the vari-

ables in the calling function can

be changed after the anonymous

function is defined the parameters

in the anonymous function will

not.

In the example in figure 5.24 the parameters for the quadratic

equation are set before the function was defined. Since they

do not appear in the variable list for the anonymous function

they are made to be fixed parameters.

Once any parameters in an anonymous function are set they

cannot be changed. You can change the variables that were
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1 function driver()
2 % DRIVER driver() is the main or driver function
3

4 % Enter data
5 a = input('Enter the first coefficient: ' );
6 b = input('Enter the second coefficient: ' );
7 c = input('Enter the third coefficient: ' );
8 x = input('Enter the value of x: ' );
9 % Anonymous function to calculate quadratic

10 quadratic = @(x) a .* (x.^2) + b .* x + c;
11

12 % Print value of quadratic function
13 fprintf('f(%0.2f) = %0.2f n', x, quadratic(x));
14

15 end

1 >> driver()
2 Enter the first quadratic coefficient: 3
3 Enter the second quadratic coefficient: -2
4 Enter the third quadratic coefficient: 5
5 Enter the value of x: 3
6

7 f(3.00) = 26.00
8 >>

Figure 5.24: Example of parameters in an anonymous function

used to create the anonymous function after the function was

created but doing so will not change the function.

5.5.3 User entered anonymous functions

It often occurs in modeling that a mathematical function is

not known when the program is being written. Or the

function may change each time that the user runs the

program. A solution is a user entered function.

A powerful use of anonymous functions is that instead of

requiring they be hard coded - like a local function - into the

program, they can be entered by the user at runtime.

f = str2func(s)
When entering a function as a

string of text it is necessary to cre-

ate a function handle for this func-

tion. This is performed with the

built-in function strcat. The input

to this function is a string of text, s.

The output is a function handle, f.

Since strings of text can be entered at runtime, if the text can

be transformed from a set of characters that form a

mathematical expression into an anonymous function it can

be called just like a function that was hard coded into the

program. This is done with the str2func function.

Once the string expression has been transformed into a

function it can be used like any other anonymous function.
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That is it can be called or passed to other functions.

1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Get the anonymous function
5 f = get_function('Enter the function expression: ');
6 % Enter the input value
7 x = input('Enter an input value: ');
8

9 % Evaluate the anonymous function
10 y = f(x);
11

12 % Print results
13 fprintf('f(%0.2f) = %0.2f n', x, y);
14

15 end
16 function f = get_function(prompt)
17 % GET_FUNCTION get_function(prompt) allows
18 % the user to enter an expression transformed
19 % into an anonymous function
20

21 % Enter the string
22 s = input(prompt, 's');
23 % Concatenate an @(x) on the front
24 s = strcat('@(x)', s);
25 % Transform s into a function handle
26 f = str2func(s);
27

28 end

1 >> driver( )
2 Enter the function expression: x.^2 - sin(x ./ 2)
3 Enter the input value: 2
4

5 f(2.00) = 3.16
6 >>

Figure 5.25: Example of a user entered anonymous function

It is possible to write a function whose purpose is to have the

user enter an expression that will become an anonymous

function. In this approach the user enters a string of text. The

text is then transformed into a function which is callable as

any other anonymous function.

The function, f = get_function(prompt), prompts the user for

a string of text. It could have the user enter the input

parameter list such as @(x), but in this case it is added to the

front of the expression string. String Concatenation
String concatenation is the process

of joining two strings together.After the input parameters are concatenated onto the
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expression, the final step is for the string to be transformed

into a function handle. This is performed with the built-in

function str2func(string).

The ability to have the user enter the function at run time can

be quite useful. Imagine that you have a program in which

you estimate the first derivative of a function at at particular

point. The problem is that you do not what the function will

be until you run the program. It might be a quadratic, or a

trig function, or something completely different. It would be

useful to have the user enter the function after the program

starts running and it then estimates the derivative of the

function that was entered.

5.6 Passing a function handle to another
function

The previous idea of estimating the derivative of a function

can be abstracted by creating a local function that does the

estimation. If the anonymous function could be passed to the

derivative function.

An example of passing a function to a function involves

estimating the derivative. The person writing the code would

not know what function needs to differentiated - if they did

they would just solve it then.

Instead they can generalize the program so that the function

can be created at run time, and then passed to the derivative

function.

In the example (figure 5.26) the user enters the function

expression as text. The function handle along with a tangent

point and a step size is passed to the derivative function. The

derivative function uses the common formula for estimating

the derivative of a continuous function at a point by

calculating the slope of the secant line.
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1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Get the anonymous function - use the function definition from
before

5 f = get_function( );
6 % Enter the input value
7 x = input('Enter the tangent point: ');
8 % Estimate the derivative
9 fPrime = derivative(f, x);

10

11 % Print results
12 fprintf('f''(%0.2f) = %0.2f n', x, fPrime);
13

14 end
15 function m = derivative(f, x)
16 % DERIVATIVE m = derivative(f, x) is a local function that
17 % estimates the derivative. This demonstrates passing a function
18 % handle to another function
19

20 dx = 0.01; % Small step size
21 m = (f(x + dx) - f(x)) ./ dx; % Estimate of derivative
22

23 end

1 >> driver( )
2 Enter the function expression: x.^2
3 Enter the tangent point: 1
4

5 f'(1.00) = 2.01
6 >>

Figure 5.26: Estimating the derivative of a user entered function

5.7 Scope and Lifetime

When a function, whether it be a local function or a nested

function, or an anonymous function, a block of memory is

reserved for the function. This includes space for any

variables that are created in the function. When the function

exits, returning any values to the calling function the

memory is erased and with it the function and its variables.

The availability of the function to the program is a matter of

its scope and its lifetime.
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5.7.1 Scope

In terms of functions and variables the scope is much like a

person’s scope. For each of us, our scope is where we can be

accessed; where can someone speak with us or call us or send

us a message. We can control our scope by setting where we

will be allowed to be contacted. Perhaps you will allow

someone to meet with you or call you in your office, but not

at home. Your scope is then your office. Another term for the

scope is the visibility.Scope
The scope of a function or variable

is the part of the program that can

call or have access to the function

or variable. Scope of functions

With respect to a function the scope of the function is from

where in the program the function be called. This is often

refined to which other functions may call it. There is a clear

difference between the scope of a local function and the scope

of a nested function.

Recall that a local function can be called from the program

driver or from any other local function. Thus the scope is any

other local function or the main program driver function.

But nested functions can only be called from their parent

function or other nested functions that are at the same level

in the parent function. The scope for a nested function is thus

its parent function and other nested functions in the parent

function at the same level.

Scope of variables

So how is this different for variables?

Variables created within a local function or within the driver

function are, by default, only accessible within the function.

Thus their scope is the function in which they are declared.

Variables in nested functions are treated a bit differently.

Recall that variables created in a function are available to any

nested function that was defined within the function. Because

of this a variable that is created in a function, whether it be a

driver function, local function, or nested function, adds to its

scope any nested functions that are defined within it.
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5.7.2 Lifetime

For a person, scope is where the person can be contacted or is

visible to those who want to contact them. Their lifetime is

when they become visible to the time that they are no longer

visible; or birth to death. Lifetime
The lifetime of a function or a vari-

able is when it is visible. It is nor-

mally the time from when the func-

tion is defined or the variable is

declared until either the end of the

function of the end of the program.

This is similar for functions and variables. Whereas scope is

the visibility, that is where it is available in the program,

lifetime is when. It is a chronological measure. Scope is where

the function or variable is visible, lifetime is when it is visible

Lifetime of a function

For a local function the lifetime of the function is the from

when the program begins to when it ends. For a nested

function the lifetime is from when the parent function is

called until it returns.

Lifetime of a variable

The lifetime of a variable is much like the lifetime of a nested

functions. The default behavior of variables are that they are

created when they are first declared - that is memory is

reserved and normally a value is stored in memory for the

variable, and are deleted when the function in which they are

declared returns. Thus their lifetime is from when the

variable is created until the function in which it is created

returns control to the calling function.

If the variable is declared in a local function and the function

in turn calls another local function, the lifetime of the variable

continues but not the scope. This is a result of the function no

longer being active, having passed control to the other local

function. But if the function calls a nested function then the

variable continues with both its lifetime and its scope since

variables are accessible within the parent’s nested function.

5.8 Encapsulation
Encapsulation
While normally a term applied to

object oriented programming, en-

capsulation is a mechanism for re-

stricting access to variables that are

created in a function. It requires

that all outside data that is needed

in a function be passed to the func-

tion through the input parameters,

and all information be returned to

the driver function through a re-

turn variable. It is also known as

information hiding.

Local functions and anonymous functions operate on the

concept of ecapsulation. This means that all variables are by

default hidden within the function in which they are created.

Further, they are inaccessible from outside of the function

unless they are explicitly passed to another function.
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Pass By Value
A parameter is passed by value

when the calling function has a

variable that contains data. At

the same time the function being

called creates a new, separate and

independent, variable. The value

in the calling function variable is

then copied into the new function

variable. If the function modifies

its local variable, the change has

no effect on the calling function

variable.

Encapsulation keeps all of the variables that were created

outside of a function outside. It also keeps all variables that

were created inside of the function inside. This is meant to

provide stability. So how does this operate?

Imagine yourself as a function. You sit in a locked
room with only a single window. Nothing can get in
and nothing can get out. Your job is to perform a
calculation on three numbers that will be provided to
you when your effort is needed. Until then you wait.

At some point during your time in the locked
room three people come to the window. Each of them is
holding a large flash card with a number on it. You do
not know how they came up with the values, nor do
you care. You write them down, in the order that they
are presented, and get to work.

When you are done you write your result on
another flash card. You take it the window and hold it
up to the glass. Someone on the outside - you do not
know whom nor do you know what they will do with
the information - writes it down. You erase your four
values - the three inputs and the one output - from
your workspace and go back to waiting.

In this description, which may seem like a scene out of Tron,

the function is completely isolated from the rest of the

program. The function cannot access the outside variables.

Instead the function must wait until the calling function

provides it with the values in the variable. At no point can

the function read or write to the outside variables. This is

known as passing by value.

5.8.1 Local Variables

When data is passed by value the variable that is created to

accept the value of the calling function variable is a local
variable. It is a new variable completely separate from the

variable in the calling function. Instead of the original

variable, it is a copy. Its scope and lifetime is determined by

the function that is being called.Local Variable
A local variable is a non-global

variable that is declared within a

function. It has a scope and lifetime

that are the same as the function

in which it was created.

The new variable within the called function can have a

different variable name than the variable in the calling
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function or it can have the same name. If you use the same

variable name in the calling function as you do in the

function that is being called, it is important to understand

that there are now two separate variables with the same

name but different scopes.

Note that the the variable x in the driver - whose value of 3 is

passed to the function - is a different variable than the

variable x that is created to accept the value from the calling

function.

1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Enter data into the program
5 x = input( 'Enter a value for x: ');
6 % Call a local function
7 y = calculation_function(x);
8 % Print x and y
9 fprintf('Driver (x, y) = (%0.2f, %0.2f)\n', x, y);

10

11 end
12 function m = calculation_function(x)
13 % CALCULATION_FUNCTION m = calculation_function(x) is
14 % a local function that's purpose is to demonstrate

that data
15 % that is passed by value creates separate variables
16 m = x.^2 - 3;
17 % Change x
18 x = x + 5;
19 % Print x and y
20 fprintf('Function (x, m) = (%0.2f, %0.2f)\n', x, m);
21

22 end

1 >> driver( )
2 Enter a value for x: 3
3 Function (x, m) = (8.00, 6.00)
4 Driver (x, y) = (3.00, 6.00)
5

6 >>

Figure 5.27: Demonstrating the

separation of variables in pass by

value

To avoid any confusion, use a different variable name in the

function from which the data is passed than in the parameter

list of the function definition.. Warning
When passing data to a function

you may use the same or different

variable names in the parameter

list as you do in the function that

has been called. Since they are two

distinct variables that just happen

to share a name, any changes to the

variable in the function that was

called will not be carried back to

the variable in the calling function.

Since the default is that functions use encapsulation as a

means to provide data integrity, is it possible to override this

and change the scope of a variable multiple, non-nested,

functions? It is and requires the creation of global variables.
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5.8.2 Global Variables

The default of making variables local is important in

supporting the goal of encapsulation. By keeping variables

within their own function creates data integrity. A function

that uses a variable that may have the same name as that in

another function cannot change the value of the second

variable.Global Variables
A global variable is a variable

whose value is retained in memory

after the function returns control.

The value can then be shared by

several functions. Its scope is all of

the functions in which is declared

as global. Its lifetime is the life of

the program.

But there are instances when relaxing the control created by

encapsulation can be useful.

You are writing a program to calculate deflections in
a beam. Regardless of the loading on the beam the
modulus of elasticity and the area moment of inertia
will remain the same throughout the program. All of
the functions that use these parameters are fixed and
must remain the same for the run. But they may change
the next time that the program is run. To guarantee
that all of the functions use the same value for the
parameters you would like to make the variables that
store the parameters available to several different local
functions.

The approach to the scenario described is to create global
variables to handle the parameters. A global variable, also

known as a static variable is created within a function by

adding the modifier global in front of the variable name. By

doing this the value of the variable is retained in memory

after the function is done and has returned control to the

calling function.

Figure 5.28: Syntax for Declaring

a Global Variable

1 global var
2 var = value;

When using a global variable for the first time in a program

you would have to set it to an initial value. But after that the

value that is stored in memory will be used.

An example of using a global variable as a parameter in a set

of local functions is shown in figure 5.29.

In this example, the deflection of a beam is to be calculated.

The deflection is determined in part by the modulus of

elasticity, 𝐸, for the material and the area moment of inertial,

𝐼, for the shape of the beam. These two values remain the

same for the different calculations as long as the beam
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remains the same. To ensure that the same value is used in

each calculation they are made to be parameters and as such

global variables.

The scope of a global variable is all of the functions which

declare the variable as global. When a function that uses a

global variable returns control the program cannot know if

the variable will be needed again, so the value is retained in

memory. As a result, the lifetime of a global variable is the

lifetime of the entire program.

The retention of a global variable is one difference from a

local variable. There is a second. A local variable must be

initialized with a value before it can be used in an operation.

A global variable does not. If a global variable is not

initialized then it receives a default value of zero.

This provides a useful method for counting how often

functions get called. You create a global variable counter in

the different functions that you want to count the total

function calls. Since you do not know which will be called

first you simply declare the variable and it will be set to zero

by default. Then in each function you add in increment to the

variable.

Adding these two lines of code to a function will result in the

variable counter being set to zero the first time that it is

encountered regardless of the function in which it is declared.

It will then immediately be incremented by one. Since the

value is retained the value will increase by one each time any

of the functions are called.
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1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Create global variables
5 global E;
6 global I;
7

8 % Enter Dimensions and Load
9 a = input('Width of cross section (m): ');

10 L = input('Length of beam (m): ');
11 W = input('Load on beam (pounds): ');
12

13 % Set the parameters
14 E = 29.0e06; % Modulus
15 I = a.^4 ./ 12; % Moment of Inertia
16

17 % maximum deflection
18 dPoint = deflectionCenterLoad(W, L);
19 dUniform = deflectionUnifLoad(W, L);
20 fprintf('\nDeflection of a Beam\n');
21 fprintf('Point Load: %10.2f in\n', dPoint);
22 fprintf('Uniform Load: %8.2f in\n', dUniform);
23

24 end
25 function d = deflectionCenterLoad(w, length)
26 % DEFLECTIONCENTERLOAD d = deflectionCenterLoad(w, l)
27 % calculates the center deflection of a beam with a center point load
28

29 % Global Parameters
30 global E; % Modulus
31 global I; % Moment of Inertia
32 % Deflection
33 d = w .* (l.^4) ./ (48.*E.*I.*length);
34

35 end
36 function d = deflectionUnifLoad(w, length)
37 % DEFLECTIONUNIFLOAD d = deflectionUnifLoad(w, length)
38 % calculates the center deflection of a beam with a uniform load
39

40 % Global Parameters
41 global E; % Modulus
42 global I; % Moment of Inertia
43 w = W ./ length;
44 % Deflection
45 d = 5 .* w .* (length.^4) ./ (384.*E.*I);
46

47 end

1 >> driver( )
2 Cross sectional width (m):
3 Length of beam (m):
4 Total load on beam (pounds):
5

6 Center Deflection of a Beam
7 Point Load: m
8 Uniform Load: m
9 >>

Figure 5.29: Using beam deflection calculations to demonstrate using a global variable as a parameter
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1 global counter; % Set to zero the first time it is
called

2 counter = counter + 1; Figure 5.30: Creating a global vari-

able counter
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5.9 Summary

5.10 Self Test

1. What is top-down design?

2. What is a function?

3. What is a built-in function?

4. What is the difference between a local function and the

named function?

5. What is the purpose of lookfor?
6. What does the command help do?

5.11 Projects

1. Write a program that calls the print_



Relational Operations,
Comparisons, and Piecewise

Functions 6
What is the difference between a calculator and computer?

Many people erroneously think that a calculator and

computer are the same - that the only difference is speed and

size. But this is not true. But it does pose the question; What is
the difference?

A calculator has four functions - it can add, subtract, multiply,

and divide. In fact a purist might argue that this is really only

a single function, addition, since subtraction is simply

addition of a negative number, multiplication is simply

repeated addition, and division is just repeated subtraction,

but for our purposes we will stay with the four.

Calculator Computer

Addition Addition

Subtraction Subtraction

Multiplication Multiplication

Division Division

Comparison

Table 6.1: Comparisons of the func-

tion of a calculator and a computer

So what are the functions of a computer? Like a calculator, a

computer can add, subtract, multiply, and divide. But a

computer has an additional operation - it can compare.

That is it. The only functional difference between a calculator

and a computer is that a computer can do comparisons. So

what is a comparison and how can we use it?

We often think of comparisons as in comparing two or more

objects. For example, compare an apple and an orange. We

look at the different colors, the different sizes, masses, and

shapes. But in a program a comparison is more simple. Is the

apple larger than the orange? Are the apple and the orange

the same color? These are the types of comparisons that a

program can make. Simple comparisons that result in true or

false, or yes or no.

In a way the ability of a computer is like a game of twenty

questions. It limited to answering yes or no. The program

cannot check how much larger two values are - just that one

is larger than the other. Or it cannot determine - directly -

how two items are different. Just that they are different.
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The comparisons the computer are not absolute. You cannot

ask how much larger one value is compared to another. Or

how they compare to all of the other values. They are relative

solely to each other. In this way the computer can respond

that it is true that one value is larger than the other, but not

by how much, or how the two compare to a third.

As a result of this relative aspect when it comes to comparing

variables, the operations are called relational; thus relational
operations.

6.1 Relational Operations

A computer’s ability to compare is about as basic as is its

ability to perform arithmetic. We call these operations

relational operations because they return a value that tells us

the relative position of the two values.

Matlab can perform six different comparisons, thus there are

six different relational operators, shown in table 6.2. They can

be thought of as returning a true or false result regarding the

relative position of the two values to each other. The six

comparison operators are less than, less than or equal, greater

than, greater than or equal, equal, and finally not equal.

Table 6.2: Relational Operators

Operator Action Example

< Less Than a < b

<= Less Than or Equal a <= b

> Greater Than a > b

>= Greater Than or Equal a >= b

== Equal a == b

∼= not Equal a ∼= b

Relational operators are more limited than are the arithmetic

operators. Recall that + will add two values and return the

sum, thus there are an infinite number of possible results

from the addition operator. But relational operators are logical
- they return only false or true.

Each of the six relational operators perform their comparison

and return a truth value - that is true or false. In Matlab the

truth values are 0 if the comparison is false, and 1 if the

comparison is true. Nothing more - just those two results.
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If you values on the number line, relational operators tell us

if one of the values is to the left of the second, is in the same

position as the second, or is to the right of the second. That is

all. It will not determine the magnitude of the distance

between the points. The result of the comparison 1 < 2 is just

as true as is 1 < 5000 with both returning the logical value 1.

Logical Value
A logical value, also known as a

truth value, is the result of a re-

lational operation. There are only

two logical values - true which is

represented by the integer value 1,

and false which is represented by

the integer value 0. logical values

are often called Boolean values.

When an expression involving a relational operator is

evaluated the result can be true, in MatLab this is the integer

value 1, or false, the integer value 0. There are no other

possibilities. The 1 or 0 are known as logical values or also as

boolean or truth values. In MatLab these values are integers.

Since they are integers, the truth value 1 for true will act the

same as the value 1 in any operation. As such they can be

stored in a variable or used in an arithmetic operation.

Similarly, the logical value 0 indicates false. It is the integer

value 0 and can be used in arithmetic operations.
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Figure 6.1: Calling a relational op-

erations from the command line

1 >> 5 < 9
2

3 ans =
4

5 logical
6

7 1
8

9 >> 3 >= 8
10

11 ans =
12

13 logical
14

15 0
16

17 >> 4 == 36./9
18

19 ans =
20

21 logical
22

23 1
24

25 >> x = 15*2;
26 >> y = 75./3;
27 >> x ~= y
28

29 ans =
30

31 logical
32

33 1

6.2 Relational Operations as a Step
Function

The values that are returned from a relational operation are

always 0 for false and 1 for true. The 0 and 1 are not symbolic -

or enumerated - they are the actual numerical values. As

such they can be used numerically.

If you multiple by a false logical value you will be multiplying

by 0 and the result will be 0. Further, if you multiply by a

logical true you are multiplying by 1 and the value will

remain the same. Similarly you can change a false to a true or

a true to a false by simply subtracting the value from 1. After

all, 1 − 0 = 1 and 1 − 1 = 0.

Note
There is a selection structure that

we will present later in this chap-

ter that is known as a switch so

while we often think of the cur-

rent application operating as an

off - on switch, to avoid confusion

we will use the mathematical term

step function.



6.2 Relational Operations as a Step Function 119

6.2.1 Programming a Piecewise Function

The use of the numerical aspect of logical values enables us

to use them as a step - that is a way for a function to jump

from one value, or one curve, to another.

We can demonstrate the application with an example.

Example A company manufactures widgets and sells them at

a price 𝑝. To simplify purchasing the widgets the sales team

would like a function that can be used to calculate the cost. If

you purchase 𝑞 items at a price 𝑝 then the cost is 𝑝 · 𝑞. But

there is a catch. If you just say that 𝑐(𝑞) = 𝑝𝑞, what happens

if the user enters a negative value for 𝑞?

The simple function would return a negative value. Instead

we need to create a piecewise function for the cost such that it

is 0 if 𝑞 < 0 and 𝑝 · 𝑞 if 𝑞 ≥ 0. This piecewise function is

𝑐 (𝑞) =
{

0 if 𝑞 < 0

𝑝𝑞 otherwise

We can program this using the relational operation q > 0.

Writing it as a local function

1 function c = cost(q, p)
2 % COST c = cost(q, p) calculates the cost of

purchasing
3 % q items at a price of p
4

5 % Calculate cost
6 c = (p .* q).*(q >= 0);
7

8 end

1 >> price = 10.0;
2 >> quant = -5
3 >> c = cost(price, quant)
4 c =
5 0.00000
6

7 >> quant = 8;
8 >> c = cost(price, quant)
9 c =

10 80.00000
11 >>

Figure 6.2: Piecewise cost function

The local function in figure 6.2 demonstrates the code for a

piecewise function with a single step. It is possible to have
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two steps, or three, or as many as you need. But to do this,

you need to turn the previous step off - that is return it to

zero - before turning the next step on. We do this with a

second relational operation; this time less than.

Example The same company from the previous example

provides price breaks for large purchases. If you purchase

less than ten of the items they are $8.00 a piece. But if you

buy ten or more the price drops to $5.00 each but with an

additional fixed fee of $30. This fixed fee keeps the cost

function continuous.

The piecewise function is now

𝑐 (𝑞) =


0 𝑞 < 0

8𝑞 10 ≤ 𝑞 < 10

5𝑞 + 30 𝑞 ≥ 10

In the same manner as the previous example we start by

turning the function on at zero, but now we have to step back

to zero when 𝑞 = 10. We do this with a second relational

operator multiplied to the first. Once that price break is met

we add a second function on to the first, but this one has a

second step to one when 𝑞 = 10

We can extend this function to as many price steps as you

need. Each one begins with a relational test at its starting

point and, with the exception of the final price, stops with a

second test at the beginning of the following price.

The price break model shows how relational operators can be

used to create discrete steps. Another application is in

modeling piecewise functions.

6.2.2 Heaviside Function

Piecewise functions are ubiquitous in engineering. Anytime

that we need to start or stop one function and replace it with

another we have a piecewise function.

Example A piecewise function can be used to model the

activation of a piece of machinery. Let the system consist of

starting a flywheel at time 𝑡 = 10 and having it accelerate to a

operational speed in five seconds. In this function we will

need the output to be at zero until it is started. At that point it

will accelerate using a linear function for the next five



6.2 Relational Operations as a Step Function 121

1 function c = cost(q)
2 % COST c = cost(q) calculates the cost of purchasing
3 % q items at a price of 8 until q reaches 10 where the
4 % price drops to 5
5

6 % Calculate cost
7 c = (8 .* q).*(q >= 0).*(q < 10) + (5.*q + 30).*(q

>=10);
8

9 end

1 >> quant = -5
2 >> c = cost(quant)
3 c =
4 0.00000
5

6 >> quant = 4;
7 >> c = cost(quant)
8 c =
9 32.00000

10 >> quant = 15;
11 >> c = cost(quant)
12 c =
13 105.00000
14 >> Figure 6.3: Piecewise cost function

with two price breaks

seconds. After five seconds it stays at that constant rotational

speed. A piecewise function to model this would be

𝑐 (𝑡) =


0 𝑡 < 10

3 (𝑡 − 10) 10 ≤ 𝑡 < 15

15 𝑡 ≥ 15

We could use relational operators to act as the switch -

turning on the first function, then switching it off and

starting the second - but this type of model is so common

that it is worth developing an alternative approach to model

piecewise functions; the Heaviside function.

Figure 6.4: Oliver Heaviside (1850

– 1925) - A self-taught electrical

engineer known for the develop-

ment of several mathematical tech-

niques used to solve differential

equations.

The Heaviside function is the following unit step functionas

shown in figure 6.5.

𝐻 (𝑡) =
{

0 𝑡 < 0

1 𝑡 ≥ 0

The value of this in modeling piecewise functions is that it is

a specific relational operator so it works exactly the same. As
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Figure 6.5: Plot of the Heaviside

function

before the return values are 0 and 1. They function the same

as do the relational operations earlier.

Since the step occurs at 0, if we want to switch a function

from 0 to 1 at 𝑡 = 0 we just have to multiply the function by

H (𝑡). Using the Heaviside function, the ramp function,

𝑓 (𝑡) =
{

0 𝑡 < 0

𝑡 𝑡 ≥ 0

can be modeled as

𝑓 (𝑡) = 𝑡 · 𝐻 (𝑡) (6.1)

If the input to this function is negative, the return is 0. But if 𝑡

is zero or above, the return is 𝑡. We can show this by looking

at some values (table 6.3)

Table 6.3: Discrete values of the

ramp function in equation 6.1
𝑡 𝑓 (𝑡) = 𝑡 · 𝐻 (𝑡)
−2 −2 · 0 = 0

−1 −1 · 0 = 0

0 0 · 1 = 0

1 1 · 1 = 1

2 2 · 1 = 2

The Heaviside function is already built in to the MatLab

library but creating a local version of it provides an increased
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understanding of how it works and why. The body of the

function is only a single line - a relational operation to check

if the input value is greater than or equal to zero.

1 function h = H(t)
2 % H h = H(t) implements the Heaviside functon
3 % return 0 if the input is negative and 1 if it
4 % greater than or equal to 0
5

6 % Test the input
7 h = (t >= 0.0);
8

9 end

1 >> x= -5
2 >> s = H(x)
3 s =
4 0.00000
5

6 >> x = 4;
7 >> s = H(x)
8 s =
9 1.00000

10 >>
Figure 6.6: Heaviside Function

The Heaviside function can be called as H(t) if the breakpoint

of the piecewise function is at 𝑡 = 0, but what if it is not? Note
Recall from Algebra that given

a function 𝑓 (𝑥), the function

𝑓 (𝑥 − 𝑎) is the same function

shifted 𝑎 units in the positive di-

rection.

In

algebra we learned that to move a function horizontally, you

subtract the amount of the translation from the input. Thus to

move the function 𝑎 > 0 units in the positive direction you

subtract 𝑎 from the input. If the function is to moved in the

negative direction then you subtract −𝑎, 𝑎 > 0, from the

input. This is the same with the Heaviside function. If the

breakpoint is moved from zero to 𝑎, then you subtract 𝑎 from

the input. Thus H(t - a) is the unit step function except now

the breakpoint is at 𝑡 = 𝑎 instead of 𝑡 = 0

Example Write an anonymous function for the piecewise

continuous function

𝑓 (𝑡) =
{

0 𝑡 < 3

𝑡2 − 9 𝑡 ≥ 3

The piecewise function can be created using the standard

form of an anonymous function where the expression is the

second case in the piecewise function - the first is not needed

since it will already be zero.

At this point we have a means of starting a piecewise
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Figure 6.7: Anonymous Piecewise

Function

1 >> f = @(t) (t.^2 - 9) .* H(t - 3);
2 >> y = f(2)
3 y =
4 0.00000
5

6 >> y = f(4)
7 y =
8 7
9

10 >> y = f(8)
11 y =
12 55
13

14 >>

function, but what about stopping it? Since the Heaviside

function is a step up from 0 to 1, switching from on to off is

the same as stepping down from 1 to 0. This requires a step

function that is equal to 1 before the breakpoint and switches

down to 0 at that point. The step down function can be

created by reversing the Heaviside function. Since the reverse

step will be 1 if 𝐻 (𝑡) = 0 and 0 if 𝐻 (𝑡) = 1 the new function

is just 1 − 𝐻 (𝑡).

Table 6.4: Heaviside as a Step

Down Function
𝐻 (𝑡) 1 − 𝐻 (𝑡)

0 1 − 0 = 1

1 1 − 1 = 0

In starting a function at a first breakpoint, 𝑎, and then

stopping it at a second breakpoint, 𝑏, we multiple the two

functions together. A simple application is to create a

function that steps from 0 to 1 at 𝑎 and then steps back down

to 0 at 𝑏.This new function

𝑓 (𝑡) =


0 𝑡 < 𝑎

1 𝑎 ≤ 𝑡 < 𝑏

0 𝑡 ≥ 𝑏

can be modeled as

𝑓 (𝑡) = 𝐻 (𝑡 − 𝑎) · (1 − 𝐻 (𝑡 − 𝑏)) (6.2)

Table 6.5 shows how this new function steps from 0 to 1 and

back to 0.

Returning to the example that opened the section, to model a
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𝑡 𝐻 (𝑡 − 𝑎) · 1 − 𝐻 (𝑡 − 𝑏)
𝑡 < 𝑎 0 · (1 − 0) = 0

𝑎 ≤ 𝑡 < 𝑏 1 · (1 − 0) = 1

𝑡 ≥ 𝑏 1 · (1 − 1) = 0

Table 6.5: Heaviside as a Step

Down Function

piecewise function you multiply the function by the product

of the step up and the step down forms of the Heaviside

function. If there are two - or more - functions you add the

additional functions on with their own breakpoints.

If the two functions are 𝑓 (𝑡) and 𝑔 (𝑡) and there are

breakpoints at 𝑎 and at 𝑏, the anonymous function becomes

p = @(t) f(t - a).*H(t - a).*(1 - H(t - b)) + g(t - b).*H(t - b);

Returning to the original example

𝑐 (𝑡) =


0 𝑡 < 10

3 (𝑡 − 10) 10 ≤ 𝑡 < 15

15 𝑡 ≥ 15

can be modeled with

1 >> p = @(t) 3.*(t-10).*H(t-10).*(1-H(t-15)) + 15.*H(t
-15);

2 >> y = p(2)
3 y =
4 0.00000
5

6 >> y = f(12)
7 y =
8 6.00000
9

10 >> y = f(16)
11 y =
12 15.00000
13

14 >> Figure 6.8: Anonymous Piecewise

Function
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6.3 Boolean Expressions

6.3.1 Order of Precedence

Recall that the arithmetic operators, addition, subtraction,

multiplication, division, and exponentiation, have a specific

order of precedence when being used - PEMDAS. Similarly,

relational operations have an order of precedence as well. In

this case the order is less than (<), then less than or equal (<=),

greater than (>), greater than or equal (>=), and finally equal (==),

and not equal (∼=). In the same way as arithmetic, if the

operations are at the same level, for example if a comparison

contains two less than relational operations it performs the

comparisons from left to right.

When entered one at a time as shown in figure 6.9, the results

of the relational operation are exactly as expected. Byt when

written as a single, multiple comparison, the results are not.

In fact, no matter what value of x is entered into the relational

operations the result will always be true, 1. It is possible to

create a similar sequential relational comparison in which the

result is always false, 0. The reason is that since the return

values of a relational operation are numerical the first

comparison will always be 0 or 1. The second comparison will

then use the 0 or 1 when performing the second comparison.

Figure 6.9: Result of Multiple Com-

parisons

1 >> x = 2;
2 >> s = (3 < x)
3

4 s =
5 0
6

7 >> s = (x < 5)
8

9 s =
10 1
11

12 >> s = (3 < x < 5);
13

14 s =
15 1
16

The unexpected logical value is due to the comparisons being

made left to right. By adding in parentheses where they are

implied, you can see the actual results one at a time. The first

comparison returns 0 since it is false, after all two is not

greater than three. But the next comparison is not with the
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value stored in the variable, it is instead a comparison to the

logical value from the previous comparison. with the zero

and that one is true, thus 1.

Example
You can see how multiple compar-

ison returns an unexpected result

by looking at the comparisons one

step at a time

𝑠 = (3 < 2) < 5

= 0 < 5

= 1

Even though the statement as writ-

ten is clearly false, the program

returns it as true.

All types of multiple comparisons will be addressed using

Boolean Expressions in section 6.3, but the example shown

above is special case that we will call a step.





Selection Structures and
Branching 7

Dorothy : Now which way do we go?
Scarecrow : Pardon me. That way is a very nice

way.
Dorothy : Who said that?... Don’t be silly, Toto.

Scarecrows don’t talk.
Scarecrow : It’s pleasant down that way, too.

Dorothy : That’s funny. Wasn’t he pointing the

other way?
Scarecrow : Of course, people do go both ways!

Wizard of Oz (1939)

1 function x = get_data_range(prompt, m, M)
2 % GET_DATA_RANGE x = get_data_range(prompt, m, M)

prompts the
3 % user to enter a value and then error checks that is

between a
4 % minimum, m, and a maximum, M
5 %
6

7 % Prompt the user to enter a value
8 x = input(prompt);
9 % Check if the value is less than the minimum

10 if(x < a)
11 % Value is too small so print an error message

and exit
12 error('Value %0.2f is below the minimum of %0.2f

', x, a);
13 end
14

15 % Check if the value is above the maximum
16 if(x > b)
17 % Value is too large so print an error message

and exit
18 error('Value %0.2f is above the maximum of %0.2f

', x, b);
19 end
20

21 end Figure 7.1: Using a simple if to

error check an input
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Lather - Rinse - Repeat
Instructions on the back of a shampoo bottle

Recall that the purpose of a function is to simplify a

program. Instead of having to rewrite code multiple times we

simply write a function to perform some task for us. Then

whenever we want that action we call the function.

There is a process that can be used in functions that allow a

function to called from within itself. This process is known as

recursion.

Recursion
Recursion is a problem solving

technique in which the solution is

found by applying the same tech-

nique to smaller instances of the

same problem.

Recursion provides a technique for repeating a function by

having the function call itself.

8.1 What is Recursion?

While few of us have ever thought of it as such, recursion is

how we run our lives. By performing the same tasks over and

over again - not a specific number of times, but when we

need to.

Think of walking out of a building. You do not say "I
will take fifteen steps and then turn left." No, you take
one step towards your destination. If you are not at your
destination you do it again - take a step towards your des-
tination. You continue this until you arrive. This is recursion.

Another common example of recursion is the direc-
tions on a shampoo bottle - Lather - Rinse - Repeat. You
can see this in the flow chart in figure 8.1. While you might
think of this as an example of a repetition structure it is open
ended - something that was made for recursion. It does not
say Do this twice: Lather - Rinse. Instead, it is actually a
selection. It becomes so when we added the logical condition
Does your hair need to be washed?

Recursion is a combination of a selection in the form of either

a simple if or an if-else and a function call. But the function call

is what so often bothers us – it is a function call to the same

function which is currently active. This is where the

definition of recursion comes in – recursion is a technique
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Figure 8.1: Flow Chart of a Recur-

sive Function Call

Start

WashHair( )

End

Is

Hair

Dirty?

Start

Lather

Rinse

WashHair( )End

Yes

No

function WashHair( )

that solves a problem by repeating the same solution on a

smaller piece of the task.
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8.2 Implementing Recursion

We used an example from our daily routine to introduce the

concept of recursion, but why use it in a program? Because

just like the daily routine example solving problems with

recursion is a natural method that we use to solve many

problems.

Many recursive applications are computational. We will see

examples for calculating factorials, and summations, and

combinations. But others are not. Instead they perform a task,

and if it is not completed – or completed incorrectly – then

the recursive continues the process.

Examples of the non-computational use of recursion are

often more direct. After all they are techniques that appear

more natural because it might be how we would do the

operation if we were not on the computer. The example that

we will use to introduce the technique is error checking an

input. But it can also be used for searching through data

looking for a specific value or item, or it can be used to sort

data – these last two will have to wait until we introduce

vectors and lists. But error checking is a simple starting point

for creating recursive functions.

8.2.1 Error Checking

Error checking is one of the most important processes in

programming. The purpose is simple - counter the old saying

of GIGO or Garbage In - Garbage Out. The recursive approach

for error checking combines a means of entering the data into

the program with the error check.

Error checking is also a natural recursive action. Imagine that

you are at a deli counter. Your number gets called and you

ask for a half pound of sliced cheddar. The deli clerk goes

back and returns with a pound of provolone. They made an

error, so you tell them that it is incorrect. Since the chances

are that the clerk simply misheard you the first time, or

became distracted, or simply forgot. Regardless, the most

direct approach to remedy this is for you to ask for deli clerk

for the cheddar again - textbook recursion!

This error checking function, figure 8.2, does just this. It starts

with printing a prompt to the user to enter the data. It then

checks if it is within the specified range of values using the

relational operator approach from chapter 7. This is known as
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Figure 8.2: MatLab code for Error

Checking

1 function x = get_data_range(prompt, a, b)
2 % GET_DATA_RANGE x = get_data_range(prompt, a, b)

is a
3 % recursive function that error checks the entered

data. It
4 % checks if the value is between a and b. If it is

not then
5 % it prints a warning and calls the get_data_range

function
6 % recursively.
7 % The stopping condition uses a simple if, not an

if - else.
8 %
9

10 % Enter the data using a call to input
11 % with the string prompt
12 x = input(prompt);
13

14 % Create two logical variables to check range
15 s = (x >= a); % These could be replaced with
16 t = (x > b); % calls to the Heaviside

function
17

18

19 % Stopping condition
20 % if it fails print warning and call

get_data_range
21 if(s.*(1-t) == 0)
22 warning('%g outside of %0.3g to %0.3g', x

,a,b);
23 x = get_data_range(prompt, a, b);
24 end
25

26 end

the stopping condition or stopping case. If the check fails, the

function prints a warning and then calls the function again. if

the range check passes then the function returns the entered

value to the calling function - the stopping, or base case.

warning
Similar to error, MatLab has a func-

tion called warning that prints a

message to the user, but instead of

exiting the program it then allows

it to continues.

Syntax:
warning(prompt);

This function could be adapted with other error checking in

addition to - or instead of - the range of the input. You could

check the type of value that was entered. For example that

the value is an integer, or a boolean value. Or you could

change the input to accept a string and then check that the

text of the string contains a specific substring.

The important concept here is how the recursion worked. It is
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functionally similar to the error checking function that we

created in chapter 7. But that function was a one off. The user

was given the chance to enter the data. Once they did it error

checked in the exact same way. But now if the user made a

mistake in data entry it just warns them and lets them try

again. Our first step into repetition.

8.2.2 Using recursion for calculations

Recursion as a tool for performing actions is valuable, but we

also want to perform calculations. And recursive approaches

to computation can at times be the difference between being

able to complete a calculation or not.

The reason for a recursive approach is two fold. The first is

that whatever the calculation is it is naturally recursive. We

will see this in both the factorial calculation and the fibonacci

series.

The second reason is that there are calculations that when

written in their common form would overwhelm the

constraints of the computer. This is the case in calculating

combinations.

Factorials are a common calculation in combinatorics and in

probability. The formula is well known

𝑛! = 𝑛 · (𝑛 − 1) · (𝑛 − 2) · · · 2 · 1

While many people would calculate the value starting at one,

it is more direct to start at 𝑛 just the way the formula is

always presented. The reason is that this formula is naturally

recursive.

The formula for (𝑛 − 1)! is

(𝑛 − 1)! = (𝑛 − 1) · (𝑛 − 2) · · · 2 · 1

Substituting this into the original formula for the factorial

results in the recursive form

𝑛! = 𝑛 · (𝑛 − 1) · (𝑛 − 2) · · · 2 · 1

= 𝑛 · (𝑛 − 1)! (8.1)

A recursive approach to calculat-

ing 4! from the top down

4! = 4 · 3!

3! = 3 · 2!

2! = 2 · 1!

1! = 1 · 0!

0! = 1

and then from the bottom back up

1! = 1 · 0! = 1 · 1 = 1

2! = 2 · 1! = 2 · 1 = 2

3! = 3 · 2! = 3 · 2 = 6

4! = 4 · 3! = 4 · 6 = 24

This recursive form is easily explained as the same

calculation being done but on a different value. In other
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words, a factorial is actually the product of a single value and

a different factorial.

Using this recursive approach if someone asks you what is

four factorial, you answer "Easy - its four times three

factorial!" And of course three factorial is three times two

factorial. You just keep calling the factorial function on

smaller and smaller values of 𝑛.

Of course you will need to stop at some point. You do this by

recalling that 0! = 1. Thus when you get to 0! you replace it

with the known value of 1 and start working back up through

the calculations.

In this example knowing to stop at 0! is called the Stopping
Condition or Stopping Criteria while the value 0! = 1 is the Base
Case.

The factorial function becomes a nature form of using this

recursive formula. As such we can now write the formula as

a function with which we can calculate any value of 𝑛 as long

as 𝑛 is a non-negative integer.

Start

n > 0? n = n - 1;

f = 1; f = n .* factorial(n - 1);

End

Yes

No

function f = factorial(n)

function f = factorial(n)

% FACTORIAL f = factorial(n) is a

% recursive function to calculate n!

% Check Stopping Condition

if(n > 0)

% Recursive Call with Update

f = n .* factorial(n-1);

else

% Base Case

f = 1;

end

end

Figure 8.3: Flow Chart and Matlab Code for a Recursive Factorial Function

8.3 Theory of Recursion

While it may appear that recursion is repetition, it is actually

a selection structure. The program calls a function. Within
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the function it evaluates whether or not some stopping

condition is satisfied. Depending upon that result the

function will either perform some operation(s) then call the

function with an updated set of input parameters; or it sets a

base case and returns control back to the driver. No repetition

- just a selection in the form of an if - else structure.

8.3.1 Three Rules of Recursion

A common question about recursion is "how do we know

that it works?" The first thing to note is that recursion has a

simple process - you call the function - the function makes an
update to itself - the function then calls it itself. If we implement

this correctly then it should work - but will it always work? Stopping Condition
Stopping Condition is the test

whether the recursive function ei-

ther update and calls the function

again, or returns the base case.

This actually has a very simple answer. A recursive function

will work as long as it satisfies the three rules of recursion.

1. The base case must behave correctly.

2. The stopping condition must result in a change in the

inputs and move toward the base case.

3. The stopping condition must call the function. Base Case
Base Case is the branch of the stop-

ping condition that does not call

the recursive function. The base

case often returns a final value al-

though it may also just return con-

trol of the function.

The flow chart in figure 8.4 shows both the general form of a

recursive function and the three rules.

While we will present it without proof, the three rules are

both necessary and sufficient. This means that as long as our

recursive function satisfies these criteria the recursion will

work, and return the correct result.

8.3.2 Stack Memory

Recursive functions are a simple but powerful method for a

program. Nevertheless there is a possible issue with their use

- memory.

When a computer program runs the computer allocates a

block of memory for the program. This memory is called the

stack. Stack Memory
Stack memory is a region of mem-

ory that stores the local variables

for a function.

Each time that a function is called the stack stores the local

variables for the function that are created. These variable

remain in the stack as long as the variable is active. The stack

operates as last in - first out (LIFO). This means that each

time a function is called the memory needed for that

function’s variables are pushed on to the top of the stack.
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Figure 8.4: Flow Chart for a Gen-

eral Recursive Function

Start

Stopping

Con-

dition

Update

Base Case Recursive Call

End

Yes

No

When that function exits, that memory is released and

returned to be used for the next function that is called. As

long as a function is active the stack memory for other

functions are not available.LIFO
LIFO is a queueing nomenclature

for Last In - First Out. It indicates

that when an item enters the stack

it goes on the top pushing all oth-

ers down. It will also be the first

one to be popped or removed from

the stack.

An analogy of the stack is to imagine a function is a sheet of

paper. Each time that a function is called a new sheet of

paper is added - pushed - onto the top of the pile - stack -

making the other sheets of paper unavailable. As long as the

function is active all memory activities take place on that top

piece of paper. When function returns control the sheet of

paper is removed and the paper - memory) -below it moves to

the top and becomes active.Stack Overflow
Stack overflow occurs when a func-

tion is called after all of the mem-

ory available for the stack has been

allocated. It is a type of run-time

error.

In recursion, each time that the function calls itself an

additional block of memory is allocated for the function.

While not normally an issue, the memory available for the

stack is finite. This means that if the recursive function

continues to call itself many times it is possible to allocate all

of the memory that has been reserved for the stack. If so the

next time that the function is called there will not be memory

available for it and the program will crash. This is a type of
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run-time error known as a stack overflow error.

Stack overflow is commonly a result of infinite recursion. A

misnomer because the function has not called itself an

infinite number of times, but it is does occur when the

recursive function as called itself so many times that there is

no longer any memory remaining in the stack. Infinite Recursion
Infinite Recursion is a run-time er-

ror resulting in a stack overflow. It

is usually a result of an incorrect

stopping condition.

The most common reason for infinite recursion is an incorrect

stopping condition. For example, if the function should

update as long as 𝑛 > 0 but the update adds one to 𝑛 instead

of subtracting the stopping case will never be reached.

Eventually all of the memory in the stack will be allocated

and the stack overflow error will occur.

8.3.3 Direct and Indirect Recursion

Using recursion to calculate the factorial is an example of

direct recursion. Within the recursive function the same

function is called again. But what if the recursive function

calls another function which in turn calls the original

function? This is still recursion but it is no longer direct, but

is now indirect.

Recall that the factorial function calls itself recursively

(figure 8.3). This is direct recursion. So how would this

change for indirect recursion?

In indirect recursion the recursive function calls a different

function which in turn calls the original function. This makes

it appear that individually neither function is a recursive

function - but when viewed together it is. Indirect Recursion
Indirect recursion is when the re-

cursive function calls a different

function which in turn calls the

recursive function.

An interesting example of this is the indirect recursive

function to determine if a number is even or odd. In this

example the function first checks to see if the entered value is

zero. Since zero is not odd it will by default return 0 for false.

If the value is not zero it then moves the isEven function for

𝑛 − 1. If the value of 𝑛 was originally equal to one then the

new value is 0 and the function returns 1 for true - the

current value is even and thus the original value was odd.

As before, the benefit of the recursive function is its simplicity

in coding. Figure 8.6 shows the indirect recursion as MatLab

code. If you had only seen one of these functions you would

not have been able to identify it as a recursive function, but

by looking at both together you should recognize that it is

recursive and an example of indirect recursion as well.
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Start

Is 𝑛 ≠ 0?

𝑡 = 0 t = isEven(𝑛 − 1)

End

No

Yes

function t = isOdd(𝑛)

Start

Is n

== 0?

t = isOdd(𝑛 − 1) t = 1

End

No

Yes

function t = isEven(𝑛)

Figure 8.5: Flowchart demonstrating indirect recursion

function f =
isOdd(n)
% ISODD t = isOdd(n)
% determines if n is
odd

% Stopping Condition
% 0 is not odd
if(n ∼= 0)
% Recursive Call
% with Update
t = isEven(n-1);
else
% Base Case
t = 0;
end
end

function f =
isEven(n)
% ISEVEN t =
isEven(n)
% determines if n is
even

% Stopping Condition
% 0 is not even nor
odd
if(n == 0)
% Base Case
t = 1;
else
% Recursive Call
% with Update
t = isOdd(n-1);
end
end

Figure 8.6: MatLab code for indirect recursion
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8.3.4 Complexity

As we have with all implementations we are interested in the

computational complexity of recursive functions. While most

recursive applications are simple and fast 𝑂(𝑛), it is possible

to have a recursive algorithm that is beyond the acceptable

complexity levels. The issue can be determined by whether

the function implements single recursion or multiple

recursion.

Single Recursion

Single recursion is just what it says. The recursive function -

either direct or indirect - makes a single recursive function

call. Each example that we have already seen is an example of

single recursion. The complexity of single recursion can be

determined in a function tree for the recursive factorial

function as shown in figure 8.7. This example of single

recursion is 𝑂(𝑛).

f = factorial(3);

f = factorial(2);

f = factorial(1);

f = factorial(0);

Figure 8.7: Hierarchical diagram

of single recursion

While adjusting the input by subtraction is commonly 𝑂(𝑛),
it is possible to have a single recursive function that is better

than that. An example code is shown in figure ??. In this

example the update is divided by two each time

Multiple Recursion

Multiple recursion is different. In multiple recursion the

function makes more than one recursive function call each

time. An example of multiple recursion is calculating the

Fibonacci sequence.

The fibonacci sequence goes back to the thirteenth century. It

is a sequence that is commonly found in nature. Its definition
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is recursive - each value is determined by the sum of the two

values that come right before it.Fibonacci
Fibonacci was a thirteenth century

mathematician from the Republic

of Pisa. Also known as Leonardo

of Pisa he is often thought to be

the most influential western math-

ematician of the middle ages. He

most often remembered for the se-

quence named after him.

𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2)
𝐹(0) = 0

𝐹(1) = 1 (8.2)

The sequence in equation 8.2 is clearly recursive. Each term is

calculated by adding the two that come before it. To calculate

the sequence

The The hierarchical diagram in figure 8.8 shows that the

Figure 8.8: Hierarchical diagram

of multiple recursion

f = F(3);

f = F(2); f = F(1);

f = F(1); f = F(0);

8.4 Applications of Recursion

Recursion can be used anytime that it is necessary to repeat a

process. After all, recursion is a type of repetition structure.

We will see that there are additional repetitions structures

which we will call loops, There are actually programming

languages that do not have loops but rely solely on recursion.

While MatLab is not one of them, it is often possible to use

recursion instead of a loop when a repetition is necessary.

There are many useful applications for recursion. They range

from functions that perform computations to those that

provide support to other actions. We already looked at error

checking an input, but there are also applications in

searching and sorting data.
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8.4.1 Computation

When it comes to computation, many recursive functions are

designed to simplify some repetitive operation. We have

already seen the example of calculating a factorial. Recall that

by its definition it is a recursive function, but we will see that

it can be calculated using a loop, A similar example is the

calculation of permutations and combinations. But the loop

approach to these calculations has a different problem – the

magnitude of the numbers. As a result, recursion becomes a

necessity.

Both permutations and combinations belong to a class of

functions used in combinatorics. Combinatoric calculations are

a basis of theoretical probability. As mentioned, the two

primary combinatoric calculations are permutations and

combinations. Each of them determines the number of

selections that can be made from a set of 𝑛 items when you

are picking 𝑘 at a time.

The number of permutations of 𝑛 items selected 𝑘 at a time is

the number of ordered sets of 𝑘 that can be formed from the

𝑛.

𝑃(𝑛, 𝑘) = 𝑛 (𝑛 − 1) (𝑛 − 2) · · · (𝑛 − 𝑘 + 1)
= 𝑛!/(𝑛 − 𝑘)! (8.3)

Combinations are similar to permutations, but the selected

subsets are not ordered (the order does not matter). It is

calculated by first calculating the permutations and then

removing all the repeated selections. The calculation is

product and quotient of factorials.

𝐶(𝑛, 𝑘) = 𝑃(𝑛, 𝑘)/𝑃(𝑘, 𝑘)
= 𝑛!

(𝑛−𝑘)!𝑘!
(8.4)

Permutations can be calculated using two factorials and

combinations with three. The three factorials would at first

make this appear to be an example of multiple recursion. But

if you wrote the function using the three factorial functions it

would actually works out to be singular recursion three times.

As such it would still have complexity of 𝑂(𝑛). But

programming the function in this form is still not
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recommended. The issue is the magnitude of the calculations.

To show this, try to calculate 𝐶(100, 50) using factorials.

The alternative is to simplify the calculation to a single

recursive function. But how?

Calculating combinations and permutations have been done

for hundreds of years. When doing this by hand the factorial

approach is untenable. But if you write out the factorial form

you may see a simplification; one of the factors in the

denominator will always cancel out. To see this try 𝐶(15, 9)

𝐶(15, 6) = 15·14·13···12·11·10

(9·8·7···2·1)(9·8···2·1)

=
(15·14···8·7)(6!)
(9·8·7···2·1)(6!)

=
(

15

6

) (
14

5

) (
13

4

)
· · ·

(
9

1

)
When you look at this calculation, what may jump out at you

is the recursive nature of it. It is nearly the same as the

factorial calculation. By grouping we see a new relationship

𝐶(15, 9) =
(

15

6

) [ (
14

5

) (
13

4

)
· · ·

(
10

1

) ]
=
(

15

6

)
(𝐶 (14, 5))

The sample shows how to identify the recursive relationship.

We can generalize it to

𝐶(𝑛, 𝑘) =
(𝑛
𝑘

)
𝐶 (𝑛 − 1, 𝑘 − 1) (8.5)

Writing the recursive relationship for combinations as a

function is shown in figure 8.9.
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1 function c = comb(n, k)
2 % COMB c = comb(n, k) is a recursive function that

calculates
3 % the number of combinations of n items taken k at

a time
4 %
5

6 % Check if k > 0
7 if(k > 0)
8 % Update
9 c = (n ./ k) .* comb(n-1, k-1);

10 else
11 % Base Case
12 c = 1;
13 end
14

15 end Figure 8.9: MatLab code for Calcu-

lating Combinations
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There is a construct in computer programming called
’the infinite loop’ which enables a computer to do
what no other physical machine can do - to operate in
perpetuity without tiring. In the same way it doesn’t
know exhaustion, it doesn’t know when it’s wrong
and it can keep doing the wrong thing over and over
without tiring.
John Maeda - American Designer

Repetition occurs over and over - no pun intended - in many

fields. Some literary examples are

“Let it snow, Let it snow, Let it snow.” - Sammy Cahn

“Miles to go before I sleep, and miles to go before I sleep.” -

Robert Frost

“But I would walk 500 miles

And I would walk 500 more

Just to be the man who walked a thousand miles

To fall down at your door” - The Proclaimers

Repetition Structure
A repetition structure is a block

of instructions that are repeated

sequentially as long as some con-

dition is met.

In literature repetition is the act of repeating the same line a

set number of times or until some other action causes it to

stop. But how does this apply to computation?

9.1 Loops and Repetition

I worked with a man who once told me “a computer does not

do anything that any of us cannot also do. It just does it over

and over without complaining." This is repetition.

Repetition in a program is the act of repeating a block code

either a fixed number of times, or until some condition is met,

or once for each item in some predetermined list. The first

two are examples of convergence, while the third is better

known as iteration.

Loop
A loop is a sequence of instructions

in a program that can be executed

repetitively either a fixed number

of times or until certain conditions

are satisfied.

Repetition structures are more commonly known as loops. In

their most basic form a loop is a block of code that once

begun will potentially run multiple times exclusive of the rest

of the program. Each time that the block of code runs is

known as a pass. Pass
A pass is a single run through the

block of instructions in a repetition

structure.
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An historical example of repetition is actually a story of

avoiding repetition.

The story - perhaps apocryphal - is of a nine year old Karl
Friedrich Gauss. A version of this is that his teacher as
punishment to an unruly class directed the students in the
class to add the numbers from one to one hundred most likely
assuming that the task would take the class at at least an
hour.
While the class worked away on the exercise, Karl simply sat
idle for a few minutes, then picked up his pencil and wrote a
number on his paper, and put the pencil back down.
The teacher was indignant at the impertinence of the student
ignoring his assignment so he picked up the paper and saw
the answer written on it – 5050.
When confronted with his insolence, Gauss pointed out that
he was able to simplify the task of repeated addition with a
simple product.

𝑆 = 1 + 2 + 3 + · · · + 98 + 99 + 100

= (1 + 100) + (2 + 99) + (3 + 98) + · · · + (50 + 51)
= 50 · 101

= 5050 (9.1)

In this case Gauss was able to simplify a repetitive process in
a way that was not obvious at the start. Instead of requiring
a hundred passes through a loop, he was able to do it in two
steps - a single addition followed by multiplication.

The Gauss example is a mathematical example of avoiding

repetition. Using repetition Gauss would have started with 1.

Added 2 to it, then 3 and so on until he had reached 100. The

repetition was not in the values but in the process. He

repeated the same process of adding a value to the sum until

some goal had been reached.

Repetition structures - loops - come in two types;

convergence loops and iterative loops. What is the difference

between the two and how are they the same?

9.2 Convergence Loops

A convergence loop is one in which the number of passes is

not known at the outset. Instead it will run as long as some

logical condition is true. In a common type of convergence

loop a set of calculations are repeated ending with a test or

error calculation being made. The program continues to
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make passes through the loop with each pass having a value

get closer to the correct result. The difference between the

calculated value and the correct value would be the error.

The repetition block would stop when this error drops below

some acceptable value. It is unlikely that you would know

the number of passes that the loop will need to make before

the acceptable error is achieved so instead it runs until the

calculated value converges to the acceptable value. Thus a

convergence loop. Convergence Loop
The more common form of repe-

tition is the convergence loop. It is

a type of repetition structure in

which a block of code is repeated

until some condition is met. The

number of passes that the loop

makes might be determined prior

to the start of the loop - such as

in a counting loop - but it is also

common that it is not known until

the loop is complete.

A non-computing example of a convergence loop is a little

leaguer trying to throw a baseball into a trash barrel ten

meters away. He will continue throwing the ball towards the

barrel until he gets one in. Once he does, he stops. He might

get it on the first throw or the one hundredth. No one knows

how many throws he will need to make - or in the

programming vernacular - how many passes the loop will

require until he actually makes it.

Another example of convergence is simple counting. It is not

uncommon that we need to repeat a block of code five time,

or ten times, or perhaps even ten million times. The number

of passes through the block of code is not relevant. What is

important is that the number of passes through the loop is

know before the loop starts. It is still convergence because the

loop repeats until some counter value is met - in effect until

the counter converges to the predetermined value.

An example of this type of repetition is providing directions.

A driver pulls over and asks you for directions. You point

them in the correct direction and tell them to go through five

traffic lights and then turn right at the sixth. The driver leaves

and when they get to the first light they count one and

continue driver (another pass through the loop). They repeat

this for light two, three, four, and so on. If you were asked for

the directions by other drivers you would always tell them

the same number of traffic lights. In this second example the

convergence is that you repeat until you have completed

some task a fixed number of times.

In both of the examples, the loop will need to make some

type of test to determine if the goal has been met - or at least

is it close enough? A question that will arise is should the test
be made before the first pass through the loop , or after the loop has
run the first time? Which is the difference between a pre-test
loop and a post-test loop.
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9.2.1 Pre-Test Loop

The pre-test loop is more colloquially known as the while
loop. It operates by first checking a logical condition. If the

logical condition is true - or 1 - then it makes a pass through

the block of code that follows it. Once the pass is complete it

returns to the logical test and the process repeats. In effect,

the loop will continue while the logical condition is true - thus

the name while loop. Eventually the logical condition will have

to be false - or 0 - when this happens the program skips the

block and continues on with the program. The syntax of the

while loop is very similar to that of the simple if selection

structure. This syntax is shown in figure 9.1.

Pre-Test Loop
A pre-test loop is a repetition struc-

ture in which a logical decision is

made before the loop begins. If it

is true then the block of code is

run. But if it is false the block of

code is skipped and the program

continues not having run the loop

at all.

Start

Logical

Action

Update

Program

End

True

False

1 while(logical)
2 % Code to run if the
3 % logical is true
4

5 % Update
6

7 end

Figure 9.1: Flow Chart and MatLab Syntax of a Pre-Test Loop

An important component of the while loop is the update.

Each time that the program makes a pass through the block

of code that forms the loop there must be the possibility that

the logical condition becomes false. If it did not then the loop

would never stop and we would have the run-time error

known as an infinite loop.

while loop
while(logical) {

%Code if true

%Update

end

To ensure that the loop does eventually end there must

always be an update within the block of code. This can be an

increment to a counter, or a check on error term, or any of

many other means of having the logical condition change

state from true to false. The method of the update is not as

important as the understanding that it must exist within the

while loop’s block of code.
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Although the while loop can be used for either a convergence

process or an iterative one. it is the ideal structure when we

want the process to converge. The introductory example of

throwing a baseball was an example of repetition until

convergence is achieved, but we are not writing a program

about throwing a baseball - although we could.

Example
Calculating a square root.

A technique that can be used to estimate a square root

involves the Newton-Raphson Methos. In it, a starting value

is guessed for the square root of 𝑠. We can use the value

𝑥 = 1. If 𝑥2 − 𝑠 ≠ 0 then 𝑥 it is not the square root and we

calculate a new estimate using 9.2.

𝑥1 = 𝑥 − 𝑥2 − 𝑠

2𝑥
(9.2)

The convergence criteria is that 𝑥2 − 𝑠 be zero which would

mean that 𝑥 =
√
𝑠. So how do we code this using a

convergence series?

Take note that when the function is implemented it first

checkis if the starting value is in fact the square root - or at

least within some small distance from it. If it is, for example if

the value of the square that is passed to the function were

𝑠 = 1 then the value 𝑥 = 1 would be the square root and the

loop would never run - or need to since it already has the

square root.

The while loop in the example demonstrates the pre-test loop.

Before any steps in the loop are run a test is made. In this case

the test is if the starting value when squared is close to the

value that was passed to the function. If the test is true - the

value is far from the squared value - the code in the loop

block is run. But if it were close then the test would have been

false and the block would have never run.

Assuming that the test result is true the block runs, performs

its calculations, may update some test value, and then

returns to the logical test. This process will continue until the

test eventually returns false and the algorithm ends. This

characteristic of the pre-test loop can be described as test - run
- repeat.

The test is the beginning creates an important consideration

in the pre-test loop. Since the logical test is always done first,

if it is false on the first test the loop would never run. That the
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Start

Get 𝑠

Get eps

𝑥 = 1

|𝑥2 − 𝑠 | ≥ eps?

𝑥 = 𝑥 − 𝑥2−𝑠
2𝑥 End

True

False

1 function [x] = square_root(s, eps)
2 % SQUARE_ROOT [s] = square_root(x, eps)
3 % estimates the square root of the
4 % value x using the Newton-Raphson
5 % method
6

7 % Error check the inputs
8 if((s < 0) | (eps <= 0))
9 error('Error on input: out of

range');
10 end
11

12 % Set a starting value (a guess) for
13 % the square root
14 x = 1.0;
15

16 % Enter loop - make passes till it
17 % converges
18 while(abs(x.^2 - s) > eps)
19 % Calculate next term
20 % This is also the update term
21 x = x - (x.^2 - s) ./ (2.*x);
22

23 end
24 end

1 >> [s] = square_root(2, 0.001)
2 s =
3 1.4142

Figure 9.2: Flow Chart and Code Sample of a Function to Estimate the Square Root of a Value

loop might never run is an important design consideration in

using a pre-test loop.

An alternative to this is to design a repetition structure that

will always run at least one time. This type of repetition

structure is known as a Post-Test Loop.

9.2.2 Post-Test Loop

Post-Test Loop
A post-test loop is a repetition

structure in which a logical deci-

sion is made after the pass through

the loop. If it is true then the block

of code is run again. If it is false the

structure ends and the program

continues. The post-test loop will

always run at least one time.

The pre-test loops is just what is says - the loop performs a test

before the loop begins. The result of the test determines if the

program should make a pass through the loop or not. If the
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test is true - the pass is made. If it is false the loop block is

skipped and the program continues. So how is this different

from a post-test loop?

The sole difference is that the post-test loop makes a pass

through the block of code and then it performs the logical

test to determine if it should do it again. The main functional

difference is that while a pre-test loop may not run at all, a

post-test loop will always make at least one pass through the

block of code that forms the loop.

The post-test loop is shown schematically in the flow chart of

the post-test loop in figure 9.3, but MatLab does not have a

post-test structure. So how would you implement this? You

would adapt a while loop to function as a post-test loop. This

does not imply that there is a post-test structure, but just that

it can be mimiced by adapting something else.

You when you look at the syntax it shows another while loop

- a pre-test loop. This is because MatLab does not implement

a direct post-test loop. Thus you would have to adapt the

while loop.

Start

Action

Logical

Program

End

False

True

Post-Test Loop

1 % Statement to force logical
2 % to be true
3 test = 1;
4 while(test)
5

6 % Code to run if the
7 % logical is true
8

9 % Update
10 % The update will need a
11 % test = 0; at some point
12 % in the loop
13

14 end

Figure 9.3: Flow Chart of a Post-Test Loop with and adaptation of a while loop to mimic the Post-Test Loop
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Since the only convergence loop available in MatLab is the

while loop, you will need to adapt it to act as a post-test loop.

This requires that you force the logical test to be true the first

time that it is encountered. A common way of doing this is to

set an initial value for the variable that will be updated in the

block of the loop. As an example, if the logical test is that the

loop should run as long as the value stored in the variable x
is greater than 10, then you set an initial value of 𝑥 = 11, or

some value that is greater than 10. Doing this will ensure that

the loop always runs the first time that it is encountered.

Example
Note
We could have made the initial

value positive infinity just as easily

as we did negative infinity, but it

is more common for an input to

have a lower bound while being

unbounded above than it is to be

unbounded below while having no

upper bound, so this will usually

be the better choice. An alternative

is to use a flag that is initially set

to true, then if the entered value is

within the range the flag would be

set to false.

Earlier, we had developed an error checking function by

using recursion. An alternative method is to use a post-test

loop. The reason for the post-test loop is that the block of the

loop will contain the input function for the user to enter data.

As a result the block of the loop must always run at least once

or there would be no way for the user to enter data.

Because we do not have an actual post-test loop, this function

will still require the use of a while loop - a pre-test loop. We

adapt this by adding an initial value that will always result in

the first test of the logical condition returning true. This is a

common way to force a pre-test loop to act as a post-test loop.

The flow chart, figure 9.4, shows this initial condition to be

negative infinity - a clearly small and out of range value.

When the user calls this function they would pass three

variables; a string that will be the prompt, the lower bound,

and the upper bound. The first pass through the loop - which

will always happen - prompts the user to enter a value. It

then uses a simple if selection structure to test if the value

entered is out of the range. If it is the warning function is

called printing a message to the user, and the pass ends and

the flow returns to the test logical test. Since the value is

already out of the designated range, the logical test simply

repeats this and it will of course be true and another pass will

be made through the loop.

Note
We had earlier written a function in

which we check the entered value

to be sure that it is within a set

range. At that time, in chapter 8,

we used recursion. The recursive

approach does not require the two

sets of tests each time, or setting

the initial value to force the loop.

You could argue that the simplicity

of the recursive function makes it

a preferred choice.

When the user does enter an acceptable value - whether it is

the first time or the fifteenth - the simple if test will be false

and the warning will be skipped. The logical test within the

while statement will also be false and the loop will end.

Convergence loops can function either pre-test or post-test.

Regardless they follow the same algorithm - passes are made

through a block of code until something result forces the

loop to end. This could be a value for a counter or a sum is
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Start

𝑥 = −∞

x < A

or

x > B?

Enter x

x < A

or

x > B?

Print Warning End

True

True

False

False

1 function [x] = get_data_range(prompt, m, M
)

2 % GET_DATA_RANGE [X]=get_data_range(prompt
,

3 % m, M)
4 % has the user enter a floating point

value,
5 % then error checks that it is within the
6 % range of m to M. If it is not it prints

a
7 % warning and starts again.
8 %
9 % This is a forced post-test loop

10

11 % Set x to force the loop to run
12 x = -inf;
13

14 % Enter loop - will be true on first test
15 while((x < m) || x > M))
16 % enter x using the prompt
17 x = input(prompt);
18

19 % test if out of range
20 if((x < m) || x > M))
21 % print warning
22 warning('Value out of range');
23 end
24 end
25 end

1 >> x = get_data_range('Enter value from 0
to 10: ', 0, 10)

2 Enter value from 0 to 10: 50
3 Value out of range
4 Enter value from 0 to 10:

Figure 9.4: Flow Chart and Code Sample of a Function for entering data and then error checking it to ensure that it

is within a pre-determined range

reached, or a mathematical operation gets within an

acceptable distance from a value. But there is another

possible type of repetition in which the program makes a

pass through a block of code one time for each item in a list.

This is known as iteration and the loop is an iterative loop.
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9.3 Iterative Loop

There are many examples where a task is repeated once for

each item in a set or list. In this case the the number of times

that the pass through the block of code is known before the

loop begins. while similar to a counting loop, this is different

in that there are a specific set of items or elements in a list

that well be accessed with each pass. This type of repetition is

known as iteration.

Iterative Loop
An iterative loop is a repetition

structure in which a set or list of

items is first created. The iterator

is then set to each item in sequence

making a pass through the loop

for each one.

9.3.1 For Loop

For Loops

In MatLab the iterative loop is known as the for loop. It

operates by creating a list of elements. It then steps or iterates
though each item in the list. With each pass through the loop

a variable - known as the iterator - is assigned the current

element in the list. After the iterator has been assigned each

element the for loop exits. The syntax of the for loop is shown

in figure 9.5.

The iteration is done automatically by the interpreter. So

while the flowchart in figure 9.5 shows a step for having the

iterator move to the next element you do not actually

program this. Instead the for loop is structured as only the

single line of code at the beginning of the block of code.

The MatLab implementation of the for is reasonably basic. It

has only two components - the iterator and the list.

Iterator

In a for loop, the iterator is a variable that points to a single

element in a set or list of elements. When the for loop is first

created the iterator is assigned the first element in the list. At

the completion of each pass through the for loop the iterator

moves - or points - to the next element. This continues until

the iterator has pointed to each element. It is because of its

role in pointing to the current element of the list that the

iterator in a for loop is also called a pointer.

Iterator
An iterator is a pointer that main-

tains the value and location of an

element in a list or set of elements.

For our purposes the iterator in the for loop looks like a

variable and acts like a variable, but is actually much more.

While it retains the value of the current element in the list - a

variable - it also maintains the location in the list - a pointer.
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Start

Create List

Elements

in List?

Iterator

Moves to the

Next Item in

the List

Action

Program

End

Yes

No

1 for k = [list]
2 % In the for loop, k

is an
3 % an iterator. It is
4 % assigned a single

value
5 % from the list one
6 % element at a time
7 % in the order in

which
8 % they are presented.
9

10 % The action is the
code

11 % that is run in the
block

12 % of the loop. It
will

13 % continue to run as
long

14 % as there are items
still

15 % in the list
16

17 end

Figure 9.5: Flow Chart and MatLab Syntax of a For Loop

While this is important, for us we still use it as if it were a

variable.

List

The second component in the for loop is the list of elements.

This can be called by several different names, list, array, vector,
or simply set. In MatLab is often compared directly to a vector,

but much the difference between an iterator and a variable,
there are differences between a list in a for loop and a vector.

List
A list is a set of elements. It is also

known as a vector, an array, or a set.

Element
An element is a single item in a list.

The list is the set of elements that will be assigned as a value

of the iterator each time that it makes a pass through the loop.

The list can be created in several different ways, but in its

most common form the list is created by enumeration inside
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a set of square brackets, [ and ].

If you have a specific set of values of which you would like to

assign to each pass through the loop then you create a list

consisting of the elements. When part of a for loop, the list

and the iterator take the form

Figure 9.6: Creating a list using

enumeration

1 k = [e_1, e_2, e_3, e_4, ... , e_5]

where e_k is some numerical value or a character. The

elements may be comma delimited or simply space delimited.

Note that when this is used in a for loop, while it appears to

be similar to an assignment statement it is not, Thus it should

not have a semicolon at the end.

An example of using enumeration to create the list of

elements in a for loop is in figure 9.7 .

Figure 9.7: Example of a for loop

using enumeration

1 fprintf('k = ');
2 for k = [6, 2, 7, 8, 5, 2]
3 % Statements to be run with each pass
4 fprintf('%d ', k);
5 end

1 k = 6 2 7 8 5 2
2

This approach to creating the list is known as enumeration. It

is a useful technique when the number of elements is small

or the elements that need to be accessed are not ins numerical

order.Enumeration
Enumeration is the process creat-

ing an ordered collection of all the

items in a list.

The elements enumerated in a list are not limited to

numerical values. They can also be characters.

Figure 9.8: Example of a for loop

a list of characters

1 fprintf('k = ');
2 for k = ['c', 'r', 'w', 'a', 'n', 's']
3 % Statements to be run with each pass
4 fprintf('%c ', k);
5 end

1 k = c r w a n s
2

An interesting result will occur if the elements are strings of

text. In MatLab a string is already a list of characters. This



9.3 Iterative Loop 159

results in the elements being individual characters instead of

the strings.

In the sample code, each character of the two strings is

interpreted as an element. This for loop would thus make ten

passes through the loop instead of two.

1 fprintf('k = ');
2 for k = ['Hello', 'World']
3 % Statements to be run with each pass
4 fprintf('%c ', k);
5 end

1 k = H e l l o W o r l d
2

Figure 9.9: Example of a for loop

with strings

Enumeration does have a downfall - size. Hardcoding a

handful of elements in to a list is not a major undertaking.

But for loop with hundreds, or thousands, or even millions of

elements is not uncommon.

If the elements are ordered, then an alternative to

enumeration is to create the list of elements as a range of

values. The list will begin at a fixed starting value, and

increase up (or decrease down) to a stopping value with each

additional element increasing (or decreasing) by a fixed

amount - the step size - from the previous value.

1 k = [start:step:stop] Figure 9.10: Creating a list using a

range of values

There are several conditions that are applied when creating a

list by range;

1. The step parameter is optional. If it is omitted it

defaults to 1

1 fprintf('k = ');
2 for k = [5:12]
3 fprintf('%d ', k);
4 end
5

1 k = 5 6 7 8 9 10 11 12
2 Figure 9.11: List example with step

= 1

This creates a problem if the stop value is smaller than start.

Since the default value for step is one, the list would consist
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of all of the elements from start decreasing to stop but with

the difference between them being a positive number. This is

impossible so the list will be empty. It will still be created,

and the program will run, but since the list is empty there are

no values for the iterator. No elements means that the loop

will never run.

If the goal was to not create an empty list, you must explicitly

set the step size. In this example the step is set to −1 so that

the iterator will decrease by one with each pass.

Figure 9.12: List example with step

= -1

1 fprintf('k = ');
2 for k = [9:-1:3]
3 fprintf('%d ', k);
4 end
5

1 k = 9 8 7 6 5 4 3
2

2. The step size will determine the distance between each

element. If the step is positive then the elements

increase while if the step is negative the elements

decrease.

Figure 9.13: List example showing

the effect of the step value

1 fprintf('k = ');
2 for k = [2:5:27]
3 fprintf('%d ', k);
4 end
5

1 k = 2 7 12 17 22 27
2

If the step contradicts the order of start and stop, ie [8:2:-3],

the list will be created but it will be empty. As with the

missing step size, a for loop using this list will be created and

the program will run, but the loop itself will not make any

passes.

3. The list will always terminate at the value at or below

stop. Thus if the the range of values beginning at start

and increasing by step does not include the exact value

of stop then the terminal value will below the selected

stop value.
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1 fprintf('k = ');
2 for k = [18:3:0]
3 fprintf('%d ', k);
4 end
5

1 k =
2

Figure 9.14: List example showing

the list will not pass the stop value

1 fprintf('k = ');
2 for k = [2:3:12]
3 fprintf('%d ', k);
4 end
5

1 k = 2 5 8 11
2

Figure 9.15: List example where

the list will stop short of the stop

value

There is no requirement that the start, step, or stop values be

integers. They can be assigned any value.

1 fprintf('k = ');
2 for k = [0.9:3.7:8.5]
3 fprintf('%d ', k);
4 end
5

1 k = 0.9 4.6 8.3
2

Figure 9.16: List example with non-

integer values

Since the loop is designed to iterate through a fixed set of

values the Gaussian sum is best implemented by using a for
loop. But this is not the only implementation. We could also

have written this code using a while loop.

It is possible to replace every for loop with a while. The

challenge would be to replace the list of elements with a

logical test and an update. This could be done by first

determining the number of passes that the loop would need

to make.

Calculating Number of Passes and Step Size

If you need to know how many passes a for loop makes, you

can add a counter that updates within the loop. But it is
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important to be able to know how many passes a for loop will

make before it is run. If the elements in the list were

enumerated then you already know. But if you are using the

range approach then number of elements is not so obvious.

The number of steps that is made is simply the integer value

of the distance from the lowest value to the largest value

divided by the step size. But there is one more element than

there are steps - the first and last element bookend the list.

Thus

𝑛 = floor

(
stop − start

step

)
+ 1 (9.3)

This equation will return the number of elements of a list

where the start, stop, and step are known. It often occurs that

you want the list to contain 𝑛 elements equally spaced from

start to stop. The equation in 9.3 can thus be solved for the

step size.

step =
stop − start

𝑛 − 1

(9.4)

Using equation 9.4 you can create a for loop with 𝑛 elements

equally spaced from start to stop by

Figure 9.17: Creating a list a fixed

number of elements

1 k = [start:(stop - start)./(n-1):stop]

The approach in 9.17 is common enough that MatLab

provides a function that does the heavy lifting for us. It is the

linspace function.

linspace
linspace creates a list of 𝑛 elements

equally spaced from start to stop

syntax: k = linspace(start, stop, n)

Figure 9.18: Creating a list a fixed

number of elements

1 k = linspace(start, stop, n)

9.4 Accumulators

Repetition is the process is repeating a set of operations until

some criteria is met - either a value converges, or perhaps a

flag becomes false, or a list of elements is exhausted. The

operations themselves are as varied as the applications of the

loop. There is, however, an application of repetition that is so
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common that it warrants its own presentation; maintaining a

running sum or total. In this application a variable is

initialized before the loop, and then with each pass the

results of a calculation are added - or subtracted, or

multiplied, or divided - from the variable.

Accumulator
An accumulator is a variable that

is initialized before the implemen-

tation of a repetition structure and

is then updated with each pass

through the loop.

This variable is known as an accumulator. It is a variable that

is initialized before the onset of a loop. Once the loop begins

the value in the accumulator will be updated by the results of

some operation that took place in the loop. In its more

common use the accumulator is a counter. It keeps a running

count of the number of passes that have been made through

the loop.

But counters are not the only application of accumulators.

They can be used for any application in which a running total,

or sum, or product, needs to be maintained. While a single

accumulator is often included with a loop, it is not

uncommon for a loop to have multiple accumulators. This is

often the case when you need to keep not just the count of the

number of passes through the loop but sum of the operations.

An application of an accumulator as a sum is the calculation

of the Taylor Series expansion of a function.

Example

Recall from the Calculus that the Taylor Series is an infinite

series that converges to some value of a function on a

particular interval. A common example is the geometric

series, equation 9.5.

𝑓 (𝑥) =
1

1 − 𝑥

= 1 + 𝑥 + 𝑥2 + 𝑥3 + · · ·

=

∞∑
𝑘=1

𝑥𝑘
(9.5)

This series converges as long as |𝑥 | < 1.

The series itself is infinite, but a sum of a finite number of

terms of the infinite series will approximate the Taylor

expansion. In writing code to do this approximation, there

will be three items to address: How we do keep track of the

current power of the term? How do we store the sum? And

how many passes through a loop will be needed?
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For the first we will create an accumulator to be the counter.

This will be created outside of the loop and initialized to 0.

For the second item, since it is a finite sum, we can create

another accumulator to store the running sum. But this

accumulator will be initialized to 0 before the first run of the

loop. This is so that the first term of the series - which will

always be 1 - when calculated outside of the loop will be

compared to epsilon and will most likely be true so that the

loop will run.

As to the number of passes - since the sequence is decreasing

(remember that |𝑥 | < 1 thus a fraction so each term is smaller

than the one before it) we should continue until the amount

that the sum increase by the additional term is below our

cutoff. This just means to continue until the next term to be

added is below some value that is passed to the function by

the user - an epsilon.

We could use a for loop if the user knows how many passes

will need to be made before the loop starts. In this case we

would create a list 𝑘 = [0 : 𝑛]. But that would be inefficient.

Why make more passes than are needed. Instead, since we do

not know the number of passes that will need to be made, we

should use a convergence loop. This is shown in figure 9.19

The Taylor expansion of the geometric function can be

adapted to any continuous function. All that it takes is to

change the terms of the sequence.
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Start

sum = 1

𝑘 = 0

𝑥𝑘 ≥ 𝜖?

sum = sum + 𝑥𝑘

𝑘 = 𝑘 + 1 End

True

False

1 function [s e] = geometric(x,
eps)

2 % GEOMETRIC [s e] = geometric
(x, err) estimates

3 % the geometric series using
the convergence of

4 % an infinite series
5

6 % Error check inputs
7 if((abs(x) >= 1) | eps <=

0)
8 error('Error on input:

out of range');
9 end

10 % Initialize the
accumulator, and counter

11 sum = 0.0;
12 k = 0;
13 % Enter loop - make passes

till converges
14 while(x.^k > eps)
15 % Calculate next term

and add
16 % it to the

accumulator
17 sum = sum + x.^k;
18 % Update the counter
19 k = k + 1;
20 end
21 end

1 >> [s e] = geom(0.5, 0.01)
2 s =
3 1.9922
4 e =
5 0.0078

Figure 9.19: Flow Chart and Code Sample of a Function to Calculate the Taylor Expansion of the Geometric Series

9.5 Nested Loops

The convergence and iterative loops developed have all been

single loops. This means that there is only a single repetition

structure and a single set of passes. This works if, for example,

a counter, 𝑥, needs to go from one to 𝑛. After making 𝑛
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passes it finishes and continues on with the program.

Imagine a second example - analyzing each point on a plane.

This would require performing calculations over a two

dimensional space - each (𝑥, 𝑦) coordinate.

To do this you would have the program would start a corner -

say (0, 0). The step through each 𝑥 value until it reaches its

maximum. At this point you have the program move 𝑦 from 0

to 1 and then reset 𝑥 back to 0. From here the process repeats.

This continues until the value of 𝑦 reaches it maximum value.

Each value of 𝑥 will require a loop and also each value of 𝑦.

But the 𝑥 loop must run for each value of 𝑦. This will require

that the 𝑥 loop be embedded - or nested inside of the 𝑦 loop.

Nested Loops
A loop is nested when it is con-

tained completely inside of an-

other loop.

A flow chart to show the process of nested loops is shown in

figure 9.20. When the repetition structure is entered, any

needed initializations for the outer loop will be made. A

logical test for the outer loop is now made. If it is true then

the inner loop is entered.

The inner loop is almost the same as the outer loop. Any

initializations for the inner loop variables are made, and then

the inner loop logical test is done. If it is true then a pass

through the inner loop is made. In the inner pass, any

updates that will eventually effect the inner logical test will

be made.

There are no restrictions on the types of loops that can be

nested. A while loop can be nested within another while loop.

A for loop can be nested within a while loop or vice versa.

For loops can be nested within for loops. The for loop inside

of a for loop is a common implementation of nested loops for

working over a Cartesian plane - it is the example that

introduced nested loops in this section.

An example of a function that implements a for loop nested

within another for loop is shown in figure 9.21. In this

example the function steps through each possible integer

value of 𝑥, then updates 𝑦, and repeats stepping through 𝑥

again. This continues until every (𝑥, 𝑦) pair on the plane has

been accessed.

There is no fixed limit to how deep the nesting of repetition

structures can be. Two loops - an inner loop nested within an

outer loop is common. As are having three loops nested one

inside of a second inside of the outer, or third, loop. This

example is one in which you might be accessing each

coordinate point in a three dimensional space.
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Start

Initialize

Inner

Initialize

Outer

Test

Outer?

Test

Inner?

Update

Inner

Update

Outer

End

True

True

False

False

Figure 9.20: Flow Chart of a

Nested Loop
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1 function cart_plane(x_min, y_min, x_max, y_max, x_step, y_step)
2 % Check nargin for number of variables
3 if(nargin == 0)
4 % Set start, stop, and step to default values
5 x_min = 0;
6 y_min = 0;
7 x_max = 100;
8 y_max = 100;
9 x_step = 1.0;

10 y_step = 1.0;
11 elseif(nargin == 4)
12 % Start and stop are passed to the function
13 % Set step to default of 1.0
14 x_step = 1.0;
15 y_step = 1.0;
16 else
17 error('Incorrect number of input parameters to function cart_plane'

);
18 end
19

20 % Start the outer loop
21 for y = [y_min:y_step:y_max]
22 % Any operations for outer loop only
23 % This is commonly empty but not always
24 for x = [x_min:x_step:x_max]
25 % All operations to be done the the point (x, y)
26 end
27 end
28 end

Figure 9.21: Sample Function of Nested For Loops
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9.6 Efficiency and Complexity in
Repetition Structures

Nesting loops can be an effective means of performing

multiple calculations without have to rewrite code. Simply

have the same operations performed with each pass through

the loop. The issue - if there is one - is that of time.

If a program makes 𝑛 passes through a loop, where 𝑛 is the

number of pieces of data, then as we have seen before this

algorithm would be 𝑂(𝑛), that is it would have linear

complexity.

If you nest two loops and the inner makes 𝑛 passes while the

outer loop makes 𝑚, then there would be a total of 𝑚 · 𝑛
passes made. This would be a quadratic time algorithm,

𝑂(𝑚𝑛) or more commonly 𝑂(𝑛2).

Continuing with this, three nested loops would be expected

to be 𝑂(𝑛3), while four is 𝑂(𝑛4). If we extend this to 𝑝 loops

nested one inside of another it is 𝑂(𝑛𝑝). All of these are still

polynomial time algorithms and should not be of great

concern. But if the number of passes is large - and millions is

not unusual - the time requirements could be noticeable and

perhaps severe.

As such, while repetition is a common technique in

programming, if it is possible to eliminate a loop then it

should be done. An example of this is the Gaussian sum that

we used to introduce this chapter.

Example

The Gaussian sum is an application that uses a single pass

repetition structure. Because it involves adding all of the

integers from a starting value 𝑎 to a maximum value 𝑏, it is a

common implemented using a for loop.

To calculate the Gaussian sum we need to create an

accumulator for the sum and set it to zero. The function will

then have to create a list of the elements from 1 to 100. The for
loop will take care of iterating through the list. Thus the only

requirement for each pass through the loop is to update the

accumulator with the next value in the list.

While this function will run quickly for almost any minimum

and maximum input values - it is a 𝑂(𝑛) or linear time
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Start

𝑠 = 0

Create List

with Iterator

𝑘 ≠ 𝜙

𝑠 = 𝑠 + 𝑘

𝑘 = next End

True

False

1 function s = gauss_sum(a, b)
2 % Check that b > a
3 if(a > b)
4 error('First value

must be smaller than
last value');

5 end
6

7 % Initialize accumulator
8 s = 0.0;
9

10 for k = [a:b]
11 % Add to accumulator
12 s = s + k;
13 % for loop

automatically steps k
to

14 % the next element
15 end
16 end

1 >> s = gauss_sum(1, 100)
2

3 s =
4

5 5050

Figure 9.22: Code Sample of a Calculating a Finite Sum Using a For Loop

algorithm - it can be reduced to 𝑂(1) - a constant time

algorithm - as Gauss did when he was nine years old.

Gauss observed that if instead of adding each element of the

list individually to a running total - his accumulator - you

could simply add the first and last values, in this case 𝑎 + 𝑏.

The same sum occurs if you move one up with 𝑎 and one

down with 𝑏, (𝑎 + 1) + (𝑏 − 1) = 𝑎 + 𝑏. This continues for

every pair of values of which there are
𝑏−𝑎+1

2
pairs. Using his

observation Gauss determined that

𝑠 =
(𝑏 − 𝑎 + 1) (𝑎 + 𝑏)

2

(9.6)

This new equation can be written as a function without any

repetition.
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1 function s = gauss_sum(a, b)
2 % Check that b > a
3 if(a > b)
4 error('First value must be

smaller than last value');
5 end
6

7 % No accumulator
8

9 % No Loop - just a single
equation

10 s = (a + b).*(b - a + 1)./2;
11

12 end

1 >> s = gauss_sum(1,
100)

2

3 s =
4

5 5050

Figure 9.23: Flow Chart and Code Sample of Calculating a Finite Sum Without a Loop

Although a repetition structure is not normally a problem in

a program - they do create the ability to perform the same

calculation hundreds or even millions of time - they can

create time issues.

A single loop has linear complexity, while two loops nested

one within the other would be 𝑂(𝑛2). As the number of

passes increases these loops can start to slow down the

program. While it is not common that a loop can be replaced

with a single calculation, if it can - as the Gauss Sum example

shows - it can greatly improve the efficiency of the program.

9.7 Errors in Repetition Structures

There is a saying in real estate that the majority of the

complaints that home owners have about home ownership

can be put into two groups; no water where you want it, and too
much water where you don’t. We will add a third - the water
pressure is just a bit too low, or perhaps just a bit too high. These

three complaints can be adapted almost directly to repetition

and loops

How are water and repetition structures related? No water

where you need it is analogous to a loop that does not run.

Too much water where you do not want it is similar to a loop

that never stops. And too low - or too high - water pressure

relates to the loop running but stops too soon - or runs just a

bit too long. These are commonly described as a loop that
never runs, an infinite loop, and the off by one error.
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9.7.1 Loop that never runs

The first type of possible error in implementing repetition is

that the loop never runs. The best designed repetition

algorithm is useless if the program never makes a pass

through the loop. Instead of making passes through the loop,

the logical test fails and the block of code in the loop never

runs. Since the program still runs - and runs to completion -

it would most likely result in an incorrect result. As such this

would be a logic error.

A problem with the loop is to determine whether or not it

actually runs. With modern processors program can run so

fast that the user will not notice the difference between the

program making a few hundred passes through a loop and

not running the loop at all. So how do we know that the

program is not making passes through the loop?

Trace
A trace is a temporary program-

ming line used for debugging -

often a print statement - that in-

dicates what is happening at a spe-

cific part of the program.

Identifying the error

An easy way to determine if the loop is running is to add a

trace to the block of code in the loop as is shown in figure 9.24.

Recall from Chapter ?? that a trace is just a line of code,

usually a print statement, that provides information to the

programmer about the code at that point. It is meant as a

temporary addition to the program that will be removed - or

switched off - when the program is complete.

Adding a trace that prints Made it here to a loop to determine

if the loop is running is a simple way to determine if passes

are being made. If the loop is running then Made it here will

print each time that a pass is made through the loop. If it

does not print at all then the loop is not running.

Causes of the error

There are two actions that occur before a pass through a loop

that will directly impact whether or not the loop runs;

initialization of variables and, for a convergence loop, the

logical test, while for the iterative loop the instantiation of the

list of elements.

The initialization of variables is a possible cause of the loop

never running. If you design a loop to run as long as 𝑥 < 10,

you would need to initialize the variable 𝑥 to some value less

than 10. But imagine that while you wanted 𝑥 = 0 to start,

you erroneously set 𝑥 = 10 - a common error is switching the

initialization value and the test condition. Or using the
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1 function check_loop(x, a)
2 % CHECK_LOOP check_loop(x, a)

is designed
3 % to run as long as x < a
4

5 % Set global debug
6 global debug = 1;
7

8 % Enter loop
9 while (x < a)

10

11 % Use the debug method
for the trace

12 if(debug)
13 fprintf('Made it here\n'

);
14 end
15 % Update x
16 x = x + 1.0;
17

18 end
19 end

1 >> check_loop(5, 8)
2

3 Made it here
4 Made it here
5 Made it here

Figure 9.24: Code Sample of Using a Trace to Determine if a Loop is Running

correct initial value but setting the test condition to 𝑥 < 0. In

either case the initial logical test would fail and the loop

would never run.

9.7.2 Infinite loop

Infinite Loop
An infinite loop occurs when a rep-

etition structure begins but never

stops.

The second error is that the loop never stops. This is so

common that it has has its own name, the infinite loop. When

it starts the loop will continue to run until the user intervenes.

In MatLab this is done by using Ctrl C to stop the program.

Since the program runs but never returns an result, an

infinite loop would be considered a runtime error.

Ending an infinite loop
The user can stop a program that

is in an infinite loop by pressing

Ctrl C.

Identifying the error

Identifying an infinite loop can be as simple as recognizing

that the program is running for an unusual amount of time.

This can be problematic because a loop that has to make

many passes may be mistaken for an infinite loop.

We can use the trace from before to identify the infinite loop.

If we do the Made it here will continue printing on the screen.

An improvement to this is to make the two changes in
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1 function check_loop(x, a)
2 % CHECK_LOOP check_loop(x, a)

is designed
3 % to run as long as x < a
4

5 % Set global debug
6 global debug = 1;
7 % Create a counter
8 counter = 0;
9

10 % Enter the loop
11 while (x < a)
12 % Update counter
13 counter = counter + 1;
14 % Use the debug method for

the trace
15 if(debug)
16 fprintf('Pass Number %d\

n', counter);
17 end
18 % Update x
19 x = x + 1.0;
20

21 end
22

23 % Print a completed step
24 if(debug)
25 fprintf('Completed %d

Passes\n', counter);
26 end
27 end

1 >> check_loop(5, 8)
2

3 Pass Number 1
4 Pass Number 2
5 Pass Number 3
6 Completed 3

Passes

Figure 9.25: Code Sample of Using a Trace to Identify an Infinite Loop

figure 9.25. The first is to add a counter to the trace so that

you know the number of passes made through the loop. The

second is to add an additional trace statement after the loop.

This second print statement shows the total number of passes

through the loop

Causes of the error

A common issue that can cause an infinite loop is the update -

or more specifically the lack of an update. If the update step

is missing from the loop block then the logical test will never

have a chance to become false. Thus the loop will never end.

A second still involves the update step. In this case the

update takes the test value in the wrong direction. For

example, if the test is that 𝑥 < 10 with an initialization of
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𝑥 = 0, and an update 𝑥 = 𝑥 − 1 then then value will move

farther away from ending instead of closer. In this case the

correction is that the update should be 𝑥 = 𝑥 + 1.

9.7.3 Off by one error

Off By One Error
An off by one error occurs when a

repetition structure too few or too

many times.

There is a third possible error in working with loops - one

that could be the most problematic of the three. It is

commonly known as the off by one error but in general it

means that the loop runs and stops, but it did not run the

correct number of times. While the name implies that when

the loop runs there is one too few or one too many passes

made, in actuality it could be any incorrect number of passes.

Similar to the loop that never runs, the off by one error would

be considered a logic error.

Identifying the error

Identifying the off by one error is done in the same way as

identifying the infinite loop. By using the same debugging

traces in figure 9.25 you will get a count of the number of

passes that were made through the loop. If the loop should

have made ten passes, but only made nine then the counter

will show nine.

Cause of the error

The off by one error is commonly a result of an incorrect

logical test. If the loop makes one too few passes it can often

be corrected by changing an absolute inequality to an

inequality. This means that if the logical test is 𝑥 < 𝑎 then it

might need to be 𝑥 <= 𝑎. On the opposite side if the loop

makes one too many passes then a logical test 𝑥 <= 𝑎 should

probably be 𝑥 < 𝑎.

A second, although less common, problem is the update step.

This might be the cause of the off by one error if the loop is

making half - or a third, or a quarter - the number of passes

than it should. Since a common update is 𝑥 = 𝑥 + 𝑎 the

problem might the value 𝑎. Instead the update might need to

be 𝑥 = 𝑥 + 2. ∗ 𝑎 or some other multiple.

9.7.4 Errors with an Iterative Loop

Two of the three repetition errors are possible with the

iterative loop (the for loop). These are that the loop never
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runs, and the off by one error. Since it is impossible to create

an infinite list you cannot have an infinite loop with a for

loop.

In both of these the error can be found by using the same

traces that were used with the convergence loop. If the

number of passes is zero, then clearly the loop never ran. If

the number of passes is different than the number of

elements that you thought were in the list then the loop is

showing an off by one error.

The remedy is to review the three limits for the list - the

starting value, the stopping value, and the step size. If the

starting value is larger than the stopping value and the step is

not negative, or it is missing, then the list will be empty and

the loop will not run. The same would happen if the starting

value is less than the stopping value but the step size is

negative. There are no other ways to make an empty list and

thus a for loop that never runs.

The off by one error also involves the three limits. The most

common is that the step size is incorrect. Recalculate the

number of elements - a formula for this will be presented in

Chapter 10. If the number of elements is not the same as the

number of passes that are needed in the loop, then reevaluate

the step size.

Number of Elements
The number of elements in a list

can be calculated using

n = floor((stop - start) ./ step) + 1;

It is also possible that the stopping value is incorrect.

Remember that the list will end at or below the stopping

value. It is not uncommon to erroneously include the

stopping value as an element when it is in fact not included.

9.8 Summary

Repetition is the process in programming that separates the

computer from the user. A person can perform even the most

complex calculation with a pencil and paper. But what the

person cannot do is repeat this calculation millions of times.

A computer can perform such repeated calculations by using

repetition.

There are two types of repetition, a convergence loop and an

iterative loop. Convergence is done using a while loop. In the

while loop a logical test is performed to determine if the loop

should run. If the result of the test it true then a pass is made

through the block of code that forms the loop. Once the pass

is completed the test is repeated. This process continues until
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the logical test returns false. The loop is described as a

convergence loop because the process - test, run, update - is

repeated until some value converges to the desired result.

Iteration is done with a for loop. Unlike convergence, in a for

loop the program creates a list, or vector, of values. With this

is a variable known as an iterator. The iterator is assigned the

value of the first element of the list and then a pass is made

through the loop. At the completion of the pass the iterator is

assigned the second element and another pass is made. This

process is repeated until each element in the list has been

accessed.

While repetition enables to computers to process massive

amounts of data they do come with an issue of time. A single

loop will normally operate in linear time, while two loops

nested one inside of the other will be quadratic. For large

amounts of data the polynomial time needed to process the

data using multiple nested loops can make an impact on the

efficiency of a program. If a loop can be replaced by a single

calculation then it is possible to reduce the complexity to a

constant time algorithm.

In addition to the complexity issues, loops can fail in three

other ways. In each it is a matter of an error in the

programming. These are that the loop fails to run, the infinite

loop, and the off by one error. In each case adding a trace to

the loop can assist in identifying the error if exists and

directing you to the appropriate fix.
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Smart data structures and dumb code works a lot
better than the other way around.
Eric S. Raymond - Open Source Software Developer

Up to now, if we wanted to use a value in a program we had

to create a variable. It is a straightforward one to one

relationship, one number - one variable, But what if we do

not know when we write the program how many values are

going to be needed? We could use an accumulator and a

single variable multiple times, but then we lose knowledge of

the individual values. And what if we need them?

You want to calculate the mean of a set of observations. Easy
enough, if you have three observations then

mean = (x1 + x2 + x3) ./ 3;
Since you have three values you create three variables, x1,
x2, and x3. But if you need four you will have to change the
code.

An alternative is to use a while loop

sum = 0.0;
count = 0;
while(count < n)

sum = sum + x;
count = count + 1;

end
mean = sum ./ n;
The while loop approach eliminates the need to know the
number of observations, but you lose the individual values.
This becomes an issue if you want to calculate the standard
deviation.

What is needed is a method of data management that

▶ can store multiple values

▶ does not limit the number of values (can be one or one

million)

▶ allows access to the individual values

▶ can be handled in the program like a single variable

The solution is to use a type of data structure called an array
or a vector.
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10.1 Manipulating Data in Vectors
Vector
A vector is a data structure that

contains a group of elements.
The most common and widely used data structure is the

one-dimensional array called a vector. It is similar to a variable

but with an important difference - it can hold multiple pieces

of data.

A vector consists of a set of elements. An element is the

individual the data item that it being stored in the vector.

Each element has an index starting at 1.Warning
A vector can be used to store nu-

merical values or characters, but

not both.

If a program has a vector called vec, then vec(k) is the 𝑘th

element in the vector. 𝑘 is the index of that element.

There are two types of vectors; row vectors and column

vectors. Thinking of this in terms of matrix dimensions a row

vector will have one row and 𝑛 columns or a 1𝑥𝑛 matrix of

elements. A column vector will have 𝑚 rows and only one

column. This would make it an 𝑚𝑥1 matrix of elements.

10.1.1 Creating a new vector

Vectors are only as useful as their data. But before they are

used, they must be created. If a vector were a variable then

the variable would be declared. But vectors are not variables in

the traditional sense; they are an object. As we create an

instance of an object. This process is often instantiating and

object, or in this case instantiating a vector.Instance
In object oriented programming an

instance is an occurrence of the ob-

ject. Creating this instance is called

instantiating.

Vectors can be created in three ways; as an empty vector, by

enumerating the individual elements, or by creating a range

of data.

Creating an empty vector

The more common means of instantiating a vector consist of

creating it by filling it with data. But there are many times

when you may want a vector that that begins its lifetime with

no elements. This is an empty vector.

Figure 10.1: Syntax For Creating

an Empty Vector

1 % An empty vector is created by assigning the [] to it
2 vector = [];

Once instantiated, an empty vector can be used in the same

way as a vector that contains data.
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Entering data by enumerating the elements Enumeration
Elements are entered into a vector

as a finite comma or semicolon

delimited list.

If the vector has only a few elements it can be created by

enumerating; listing the individual elements in the vector

separated by commas or spaces.

1 % Each element is entered in a comma delimited list
2 rowVector = [e_1, e_2, e_3, ... , e_n]; Figure 10.2: Syntax For Enumera-

tion of a Row Vector

To create a column vector the commas are replaced with

semicolons.

Note
Row vectors and column vectors

behave similarly. The distinction

is minor now but will become im-

portant when they are used with

matrices. Unless you specifically

need one or the other it will not

normally matter which you use,

but you should be consistent. If

you use row vectors then stay with

row vectors. If you use column vec-

tors then stay with column vectors.

Avoid mixing the two in a single

operation.

1 % Each element is entered in a semicolon delimited list
2 columnVector = [e_1; e_2; e_3; ... ; e_m]; Figure 10.3: Syntax For Enumera-

tion of a Column Vector

Example 10.4 demonstrates creating a row vector called

dataRow with eight numerical elements, and another called

dataColumn with five, on the command line.

1 >> % Row vector - each element is comma delimited list
2 >> dataRow = [7, 5, 2, 9, 6, 8, 0, 4]
3 dataRow =
4 7 5 2 9 6 8 0 4
5

6 >> % Column vector - each element is semicolin
delimited list

7 >> dataColumn = [3; 8; 1; 0; 5]
8 dataColumn =
9 3

10 8
11 1
12 0
13 5
14 >> Figure 10.4: Row and Column Vec-

tors with Eight Elements

Enumeration is the preferred choice if you just need to enter a

small set of values that are not in particular order. But what if

you need to create a vector with hundreds or thousands of

values?

Entering the elements in a vector as a range

If the data is an increasing or decreasing series with a

constant distance between points then you can create the

vector as a range of values.
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Figure 10.5: Syntax For Indicating

the Range of Elements in a Row

Vector

1 % Elements are determined by a range of values
2 rangeVector = [start:step:stop];

In the range approach, you enter three colon delimited

values; the starting point, the step size - the distance between

each point, and the stopping value. While the first element of

the vector will the starting value, the stopping value is a do
not exceed value. This means that the final element will be at

or below the stopping value but never above it.Note
The final value in a vector will not

pass the stop value. The step value is optional. If it is omitted then it defaults to

one. A common use of this - as it was in the for loop - is to

create a vector with a set of values 1, 2, 3, · · · , 𝑛 where 𝑛 is

set in the program.

Figure 10.6: Vector with Range

from 1 to 8

1 >> % Row vector - unit step from one to eight
2 >> dataRow = [1:8]
3 dataRow =
4 1 2 3 4 5 6 7 8
5

6 >> dataRow = [3.2:6.7]
7 dataRow =
8 3.2 4.2 5.2 6.2
9

10 >>

Of course the range can start or stop at any values, positive or

negative. If the start < stop then the elements will be

increasing. But if start > stop, and step is omitted an empty

vector will be created.

Figure 10.7: Increasing and De-

creasing Range of Elements in a

Vector

1 >> % Row vector - increasing range
2 >> incVector = [-4:5]
3 incVector =
4 -4 -3 -2 -1 0 1 2 3 4 5
5

6 >> % Row vector - decreasing range
7 >> decVector = [6:-2]
8 decVector = [](1x0)
9

10 >>

Warning
If start > stop and step is omitted

an empty vector will be created.

No warning or error will be given.

The empty vector, as in example 10.9 is created and is

accessible. It is a vector like any other it just does not contain

any elements. The notation (1𝑥0) indicates that it is a row

vector; one row with zero columns.



10.1 Manipulating Data in Vectors 183

If start ≤ stop < start + 1 then the vector will contain only a

single element. This also covers the case where start = stop
(example 10.8).

1 >> % stop = start
2 >> scalar = [2:2]
3 scalar =
4 2
5

6 >> % stop < start + 1
7 >> scalar = [5:5.7]
8 scalar =
9 5

10

11 >> Figure 10.8: Creation of a Scalar

When stop ≤ stop + 1

When the step is set the vector is created where each element

is step away from the previous element. The final element

will not always be stop. As mentioned previously, stop is a do
not exceed value. This means that if adding an additional step
to value results in an element that is beyond stop then the

vector stops with lower value.

1 >> % Row vector - increasing range
2 >> stepVector = [2:0.7:6]
3 stepVector =
4 2.7 3.4 4.1 4.8 5.5
5

6 >> % Row vector - decreasing range
7 >> decVector = [6:-1.3:-2]
8 decVector =
9 6 4.7 3.4 2.1 0.8 -.5 -1.8

10 >>

Figure 10.9: Increasing and De-

creasing Range of Elements in a

Vector

The elements are created using the recursive formula

𝑎𝑘 = 𝑎𝑘−1 + step
𝑎1 = start
𝑘 = 2, 3, . . . , [[1 + (stop − start)/step]] (10.1)

Greatest Integer Funcdtion
The function [[𝑥]] is the greatest

integer function (GIF). It is the

largest integer that is less than or

equal to 𝑥. In MatLab the GIF can

be called using floor(x).

The recursive formula shows that elements will be created in

both increasing series, step > 0, and decreasing series,

step < 0. But if step is in contradiction with the direction of

start and stop then the recursive series fails. In this case you

will still create a vector, but it will be empty. Warning
While vectors can be created that

are both increasing and decreas-

ing, the sign of step must corre-

spond to the whether the vector

elements are increasing or decreas-

ing. If they do not, the vector will

be created but it will be empty.
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The range method can only be used to create row vectors. If

you need to create a column vector then you do so in two

steps. First you create the row vector then you take the matrix

transpose using the transpose operator (.’). This will

transform the row vector into a column vector.

Figure 10.10: Creating a Column

Vector Using the Range of Ele-

ments

1 >> % Create the range then take transpose
2 >> colVector = [0:4].'
3 colVector =
4 0
5 1
6 2
7 3
8 4
9

10 >>

Assigning elements individually

Creating a vector by either enumerating all of the elements or

by setting up a range of values is a common method if the

values of the elements are know prior to running the

program. But there are often times when you need to enter

the value of an element one element at a time during the

runtime. You can do this by assigning a value to an

individual element.

Figure 10.11: Syntax for Creating

a Vector by Assigning Individual

Elements

1 % Syntax For Entering Individual Elements
2 vector(k) = [e];

An example of this is shown in figure 10.12 where a new

vector is created by first assigning a value to the first element;

then the second, and the third, and so on.

Figure 10.12: Entering Individual

Elements

1 >> % Enter values into the individual elements by their
index

2 >> vector(1) = 3;
3 >> vector(2) = 5;
4 >> vector(3) = 2;
5 >> vector(4) = 7
6 vector =
7 3 5 2 7
8

9 >>

This is a common approach for when the user will be
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entering the data through an input prompt as demonstrated

in example 10.13.

1 function driver( )
2 % DRIVER driver( ) is the main or

driver function
3

4 % Create an empty vector
5 X = [ ];
6 % Create a counter and an input

variable
7 count = 0;
8 x = 0;
9

10 % Enter data using a while
loop

11 % Use a sentinel value (< 0)
to stop

12 fprintf('Enter each value\n');
13 fprint('(negative to quit)\n');
14

15 while(k > 0)
16 k = input('Next value: ');
17 if(x > 0)
18 count = count + 1;
19 X(count) = x;
20 end
21 end
22 % Print the vector using a for

loop
23 fprintf('\n X = ');
24 for k = [1:count]
25 fprintf('%d: x = %0.2f ',

k, X(k));
26 end
27 % Print a new line
28 fprintf('\n ', k, X(k));
29

30 end

1 >> driver( )
2 Enter each value
3 (negative to quit)
4 Next value: 7
5 Next value: 3
6 Next value: 6
7 Next value: -5
8

9 X = 7.00 3.00
6.00

10

11 >>

Figure 10.13: Filling a Vector Using a while Loop and a Sentinel Value

The example also shows a means of printing the elements of

a vector. Since each element can be accessed by its index, a for
loop that iterates through a list of the vector indices will also

access each element. Note
If the index exceeds the current

size of the vector, the vector will

be expanded and the missing ele-

ments will be assigned the value

0.

There is no requirement that the elements be entered in order.

If the index of an element that is being entered is beyond the

final element of the current vector, or not 1 for a new vector,

the vector that you create will be filled with zeros up to the
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index specified. This will also create a new vector if one does

not already exist.

Figure 10.14: Buffering Vector Ele-

ments with Zeros

1 >> % Enter individual element
2 >> vector(4) = 3;
3 vector =
4 0 0 0 3
5

6 >> vector(7) = 8;
7 vector =
8 0 0 0 3 0 0 8
9

10 >>

This technique can be useful when creating a vector of all

zeros - although we will later see another way. Assign a value

of 0 to what is to be the last element of a vector. It will be set

to 0 as will all of the elements that come before it.

Figure 10.15: Creating a Zero Vec-

tor

1 >> % Enter individual element
2 >> zeroVec(7) = 0;
3 zeroVec =
4 0 0 0 0 0 0 0
5

6 >>

10.1.2 Reassignment of Elements in a Vector

Vectors are mutable - a term that simply means that the

individual elements can be reassigned. Changing individual

elements is a matter of reassigning a value to a particular

element. This can be done individually - one element at time -

or by range.

Mutable
An object if mutable if their com-

ponents can be changed after they

have been assigned.

Assigning a scalar to a single element

The syntax for changing a single element is shown in

figure 10.16.

Figure 10.16: Syntax for Changing

an Individual Element of a Vector

1 % Assigning a scalar to an element by indicating the
index, k

2 vector(k) = [x];

When assigning data to a single element of a vector the index

of the element is within a set of parentheses, ( ), while the

new element can - but is required to - be within a set of
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square brackets [ ]. This creates a clear demarcation between

the data in the element and location or index of that element.

The sample code in figure 10.17 demonstrates this.

1 >> X = [6 3 8 1 4];
2 >> X(2) = [5]
3 X =
4 6 5 8 1 4
5 >> Figure 10.17: Changing an individ-

ual element of a vector

Warning
When reassigning an individual

element or a range of elements, the

index values are indicated with the

vector inside of the parentheses.

The values of the elements that will

be stored in the vector are collected

inside of square brackets.

Assigning a vector to a range of elements

It is also possible to reassign a range of elements using a

single command. It is very similar to an assignment to a

single element, but the index is replaced with a range of

indices, and the scalar value for the element is replaced with

a vector. The syntax for this is shown in example 10.18.

1 % Assigning a vector to a range indicated by start:step
:stop

2 vector(start:step:stop) = [e_1 e_2 ... e_n]; Figure 10.18: Syntax for Changing

a Range of Elements of a Vector

There are several items that need clarification in how

updating a range of elements is done.

▶ Because the range corresponds to the index values in

the vector, the values of the range must be integers.

▶ The minimum value for the range is 1.

▶ If the step is excluded then it defaults to 1.

▶ The range can be increasing or decreasing, but if it is

decreasing then the step must be included.

▶ If the length of the range of elements to be assigned in

the range on the left of the assignment operator is 𝑛,

then the length of the vector with the data to be

assigned must be either 𝑛 or one.

In this sample code, a range of three is indicated by the (2:4)
and the vector on the right hand side has three elements.

Thus the element values 3, 8, 1 are reassigned to 5, 9, 0. Scalar Expansion
If a vector is being assigned a scalar

to a range of elements, the scalar

is automatically repeated using

scalar expansion until it is the same

length as the vector.

What if the right hand side vector has a length of one - that is

it only contains a single element? Then the single element is

expanded to the same length of the vector using what is

known as scalar expansion. This means that the scalar is

repeated the number of times that are needed to make it

appear as a vector with all elements the same.
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Figure 10.19: Assigning a vector of

elements to a subrange of elements

of another vector

1 >> X = [6 3 8 1 4];
2 >> X(2:4) = [5 9 0]
3 X =
4 6 5 9 0 4
5

6 >>

Figure 10.20: Assigning a scalar

to a range of elements in a vector

using scalar expansion

1 >> X = [6 5 9 2 4 1 8 7 3];
2 >> X(3:5) = [3]
3 X =
4 6 5 3 3 3 1 8 7 3
5

6 >>

The step parameter makes it possible to assign data to

noncontiguous elements of the vector. For example, if you

need to change every third element to 0 then you set step to 3

as in figure 10.21.

Figure 10.21: Using step to reas-

sign data to noncontiguous ele-

ments

1 >> X = [6 5 9 2 4 1 8 7 3];
2 >> X(1:3:9) = [0]
3 X =
4 0 5 9 0 4 1 0 7 3
5

6 >>

This will also work right to left - a decreasing range - as long

as start > stop and step < 0. As always start, step, and stop
must be integers.

Figure 10.22: Using a negative step
to reassign from right to left

1 >> X = [6 5 9 2 4 1 8 7 3];
2 >> X(9:-4:1) = [0]
3 X =
4 0 5 9 2 0 1 8 7 0
5

6 >>

In addition to mutability - the ability to reassign values to the

elements of a vector - the length of the vector in terms of the

number of elements will increase and decrease as elements

are added or removed. This means that vectors are dynamic.
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10.1.3 Dynamic Vectors

We have seen that we can create vectors and add elements to

that vector by assigning a value to an individual element. If

the vector does not exist then it is created with the first

element assignment. If it does, and the index is beyond the

last element of the vector, then the vector is expanded to

include the new element. As we have seen the expansion may

include the creation of additional elements of which each is

assigned the value 0. This demonstrates that vectors are

dynamic - they can grow with the addition of data. We also

see that they can shrink as elements are removed from the

vector. Dynamic Vectors
A vector that can have data added

to it and thus increase the number

of elements, or data deleted de-

creasing the number of elements

is a dynamic vector.

Vectors, being dynamic, can increase in length by adding

elements or decreased by deleting elements.

Appending elements onto a vector

We have already seen an example of expanding a vector;

assigning a value to an element beyond the current end of the

vector. Examples of this are in figures 10.11 and 10.14. In both

cases this is known as appending - adding data to then end of

a list or a vector. Appending
Appending data consists of adding

elements to the end of a vector,

thus increasing the length of the

vector.

1 % Appending elements after the end of a vector of
length n

2 % Note m > n and is an integer
3 vector(m) = [e_1 e_2 ... e_k]; Figure 10.23: Syntax for Append-

ing Elements onto a Vector

Appending data is not limited to single elements. Vectors can

be appended onto the tail of a vector as long as the range of

the index values matches the number of elements in the

vector to be appended. As with scalars, if you append a

vector at a point beyond the current final element then the

additional elements will be created with the value 0. The step
parameter can also be set so that the vector being appended

is not contiguous but instead separated by elements with the

value 0.

Inserting elements within a vector

It is also possible to add elements to the head of a vector - the

beginning - or the middle. Unlike appending this is known as

insertion.
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Figure 10.24: Appending a vector

onto the end of another vector

1 >> X = [3 7];
2 >> % Append a vector onto the tail
3 >> X(3:4) = [5 1]
4 X =
5 3 7 5 1
6

7 >> % Append a vector beyond the tail with a step value
8 >> X(7:2:9) = [6 8]
9 X =

10 3 7 5 1 0 0 6 0 8
11

12 >> % Append a scalar with a repeat of the value
13 >> X(10:2:12) = [2]
14 X =
15 3 7 5 1 0 0 6 0 8 2 0 2
16

17 >>

There is a slight difference in the syntax when inserting a

vector at the head or tail than there is when inserting it

within the middle of a different vector.

Figure 10.25: Syntax for Inserting

Elements at the Head or Tail of a

Vector

1 % Inserting elements at the head of a vector
2 vector = [ [e_1 e_2 ... e_k] vector];
3

4 % Inserting elements at the tail of a vector
5 vector = [ vector [e_1 e_2 ... e_k] ];

Insertion consists of creating a new vector consisting of the

current vector and the scalar or vector to be inserted. Once

created this new vector is assigned to the current vector,

replacing it.

The difference that occurs when inserting within the vector is

that the original vector must be split at the insertion point.

The portion that is to remain in the front of the insertion

point is indicated by its range while the remaining subvector

is placed after the inserted vector and is indicated by its

original range.

Warning
When inserting a vector into the

middle, the ranges that are indi-

cated are those of the current vec-

tor before the insertion.

Figure 10.26: Syntax for Inserting

Elements into a Vector

1 % Inserting elements after the mth element of a vector
of length n

2 % Note 1 <= m <= n and is an integer
3 vector = [vector(1:m) [e_1 e_2 ... e_k] vector(m+1:n)];

In figure 10.27 the second insertion takes place at index 4.

Thus the first three elements of the current vector are placed
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in the new, temporary, vector. After the vector that is to be

inserted, the remaining elements of the original vector are

placed at the tail. Since the remaining vectors started at the

old index of 4 the are indicated with the old index value

despite now being at index 6.

1 >> X = [3 7];
2 >> % Insert a vector at the head
3 >> X = [[5 1] X]
4 X =
5 5 1 3 7
6

7 >> % Insert a vector in the middle
8 >> X = [X(1:3) [6 8] X(4)]
9 X =

10 5 1 3 6 8 7
11

12 >>
13

14 >> % Insert a vector at the tail
15 >> X = [X [4 2]]
16 X =
17 5 1 3 6 8 7 4 2
18

19 >>

Figure 10.27: Inserting a vector

onto the head and in the middle

of another vector

Inserting elements can be implemented individually - as a

single element - or as an additional vector. With the insertion

approach a new - albeit unnamed vector is temporarily

created. Once the insertion is completed the temporary vector

is assigned to the original vector - replacing the old with the

new. Note
Appending elements onto the tail

of a vector allows the ability to

buffer missing elements with ze-

ros and also the ability to set a step
value to have the appended vector

skip elements by adding in zero

values. Inserting does not. Any vec-

tor or scalar inserted will done by

creating a gap in the original vector

and filling that gap with the new

elements.

The number of elements in a vector can be increased by

insertion anywhere in the vector - head, middle, or tail - and

also by appending onto the tail.

But in keeping with the dynamic nature of vectors - if

elements can be added they should be able to be removed.

Thus elements can be deleted as well.

Deleting elements from a vector

Deleting an element or a set of elements from a vector is

accomplished in the same way if the elements are at the head,

the middle, or the tail. In fact it is not so much a matter of

deleting the elements as it is reassigning them with ...

nothing.
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To delete an element, a range of elements, or selected

elements you reassign them with the empty vector, [ ].

Figure 10.28: Syntax for Deleting

Elements from a Vector

1 % Deleting elements from an interval of a vector
2 vector(start:step:stop) = [];

In its most basic - deleting a single element - you set that

element to the empty vector. After doing so will realign the

indices for the vector so that all of those after the deleted

element will shift one to the left.

Figure 10.29: Deleting an Element

or a Range of Elements from a vec-

tor

1 >> X = [1:15];
2 >> % Delete the fifth element
3 >> X(5) = []
4 X =
5 1 2 3 4 6 7 8 9 10 11 12 13 14 15
6

7 >> % Delete the current 7th through 9th element
8 >> X(7:9) = []
9 X =

10 1 2 3 4 6 7 11 12 13 14 15
11

12 >>
13

14 >> % Delete every third element of those remaining
15 >> X(3:3:length(X)) = []
16 X =
17 1 2 4 6 11 13 14
18

19 >>

Appending and inserting elements is reversible. As long as

you retain the length of the original vector or the location of

the inserted elements you can then delete them. But not so

with deletion. Once elements are deleted they are gone.

10.2 Operations With Vectors

Vectors provide a means of storing and moving data through

a program with only a single variable. This includes passing

vectors to a function and returning them from functions.

Whether the operations with vector take place within a

function or outside of one, the computations can take

advantage of their multiple data elements.

These calculations happen in two ways; as one-dimensional

matrices or as individual elements. The first will follow the



10.2 Operations With Vectors 193

properties of matrix operations while the latter is done

element-wise.

10.2.1 Element-Wise Operations

The most common use of vectors is in element-wise

operations. In this type of operation computations are

performed between a vector and a scalar, or two vectors of

the same type and size.

Element-wise operations with vectors are operations in which

the computation is performed between the elements in the

first vector with the elements in the same location of the

second. Thus if you have two vectors, X and Y then the first

element of X will be matched with the first element of Y. The

second of each will be paired, and the third, and so forth.

If we use ⊙ to indicate any element-wise operation then

𝑍 = [𝑎1 , 𝑎2 , . . . , 𝑎𝑛] ⊙ [𝑏1 , 𝑏2 , . . . , 𝑏𝑛]
= [𝑎1 ⊙ 𝑏1 , 𝑎2 ⊙ 𝑏2 , . . . , 𝑎𝑛 ⊙ 𝑏𝑛] (10.2)

Warning
The sample code in figure 10.30 is

included to show how an element-

wise operation could be written. It

is included simply as a chance to

look under the hood. You should not

actually write your vector opera-

tions using for loops but instead

use the element-wise operators.

While element-wise operations are built in as callable

operators, it is possible to write code using a single for loop

that perform an element-wise operation on two vectors - or a

vector and a scalar. A demonstration of this in figure 10.30.

Although any of the element-wise operations can be written

using a for, loops, especially iterative loops, are considered

slow when using an interpreted language. As such they

should be avoided. Instead MatLab provides built-in

operators for the five element-wise operations between

vectors, addition +, subtraction -, multiplication .*, division ./,
and exponentiation .∧.

Element-wise calculations are the standard when performing

any calculation with vectors as examples 10.32 and 10.33

show. Note
A question about calculations is

often asked. “Why use .*, ./, and

.∧ instead of the the commonly

accepted *, /, and ∧? The more

common operators are used for

matrix operations. The dot opera-
tor is used to differentiated matrix

from element-wise operations.

If the operations are between a vector and a scalar then the

scalar expansion is performed so that the scalar is the same

length as the vector. From there the usual element-wise

operations are done. Of course the scalar expansion is never

seen.
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Figure 10.30: Adding the elements

of two vectors using a for loop

1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Set the length
5 n = 8;
6 % Create two vectors
7 X = [3, 4, -3, 6, 8, -7, -1, 9];
8 Y = [6, 1, 5, 9, 7, 2, -3, 4];
9

10 % Start a for loop to add the elements of the
11 % two vectors. The iterator a list from 1 to n
12 for k = 1:n
13 % Add the corresponding elements
14 Z(k) = X(k) + Y(k);
15 end
16

17 % Show the elements of Z
18 Z
19

20 end

1 >> driver( )
2 Z =
3

4 9 5 2 15 15 -5 -4 13
5

6 >>

Figure 10.31: Syntax for the Five

Element-Wise Operations

1 % Addition
2 vectorSum = vec_1 + vec_2;
3 % Subtraction
4 vectorDifference = vec_1 - vec_2;
5 % Product
6 vectorProduct = vec_1 .* vec_2;
7 % Quotient
8 vectorQuotient = vec_1 ./ vec_2;
9 % Power

10 vectorPower = vec_1 .^ vec_2;

10.2.2 Matrix Operations with Vectors

While we commonly think of vectors as a data structure to

store and manipulate multiple elements, they are at the most

basic a one-dimensional matrix. A row vector is a 1𝑥𝑛 matrix

and a column vector is an 𝑚𝑥1 matrix.Note
Using the operator with the dot or

without when adding, subtracting,

or multiplying a vector and scalar

will not change the result. A mat-

ter of consistency is to choose the

operator based upon whether the

operations are meant to be matrix

or element-wise. If matrix opera-

tions then do not use the dot. If

element-wise then use the dot.

Matrix operations with a vector and a scalar are the same

regardless of whether it is done using element-wise or matrix

calculation. As such, if you are adding, subtracting,
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A question is often asked about calculations. “Why use .*, ./,
and .∧ instead of the same operator without the dot? After
all, it works just fine with scalars.”
The answer is that all operations were originally meant

to be used with matrices in matrix operations. Because of
this the common operators for multiplication, division, and
exponentiation were assigned to their matrix calculation.
And yes, it does work for scalars because a scalar is a 1𝑥1

matrix and for scalars the matrix operations and the element-
wise operations are the same. But they are not the same for
vectors or other matrices.
This is also the reason that you do not need the dot for

+ or -. Matrix addition and subtraction are the same as
element-wise addition and subtraction. Since there is no
difference there is no need for the dot.

1 function driver( )
2 % DRIVER driver( ) is the main or

driver function
3

4 % Create vectors
5 X = [6, 3, 9, 7]
6 Y = [2, 0, 3, 1]
7

8 % Addition
9 A = X + Y

10 % Subtraction
11 S = X - Y
12 % Multiplication
13 M = X .* Y
14 % Division
15 D = X ./ Y
16 % Exponentiation
17 E = X .^ Y
18 end

1 >> driver( )
2

3 X =
4 6 3 9 7
5 Y =
6 2 0 3 1
7 A =
8 8 3 12 8
9 S =

10 4 3 6 6
11 M =
12 12 0 27 7
13 D =
14 3 inf 3 7
15 E =
16 36 1 729 7
17

18 >>

Figure 10.32: Demonstrating Element-Wise Operations with Two Vectors

multiplying a vector and a scalar the choice of operator, with

the dot or without, does not matter.

If the row vector is multiplied to the column vector then each

must have the same dimension (number of elements). But the

dimensions of the two vectors do not have to be the same if it

is the column vector multiplying the row vector. Recall that

when multiplying matrices the columns of the first must
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1 function driver( )
2 % DRIVER driver( ) is the main or

driver function
3

4 % Create a scalar and a
vector

5 a = 4;
6 X = [2, 0, 3, 1];
7

8 % Addition
9 A = a + X

10 % Subtraction
11 S = a - X
12 % Multiplication
13 M = a .* X
14 % Division - Scalar

Denominator
15 DSD = a ./ X
16 % Division - Vector

Denominator
17 DVD = a ./ X
18 % Exponentiation - Scalar

Base
19 ESB = a .^ X
20 % Exponentiation - Vector

Base
21 EVB = X .^ a
22 end

1 >> driver( )
2

3 A =
4 6 4 7 5
5 S =
6 2 -4 1 3
7 M =
8 8 0 12 4
9 DSD =

10 0.5 0 0.75
0.25

11 DVD =
12 2 inf 1.33

4
13 ESB =
14 16 1 64 4
15 EVB =
16 16 0 81 1
17

18 >>

Figure 10.33: Demonstrating Element-Wise Operations with Vector and Scalar

match the rows of the second. Thus for two vectors

(1𝑥𝑛) ∗ (𝑛𝑥1) = 1𝑥1 (scalar)
(𝑛𝑥1) ∗ (1𝑥𝑚) = 𝑛𝑥𝑚 (matrix) (10.3)

The first product, the scalar, is the dot product or scalar product.
It is a common calculation in engineering for calculating the

magnitude of a vector or the angle between two vectors.Dot Product
The dot product, or scalar product is

the matrix product of a row vector

and a column vector of the same

length. It is calculated as the sum

of the products of each matching

element. It can be used to deter-

mine the angle between two vec-

tors.

The magnitude of a vector is its length. It is calculated by

|𝑢 | =
√
𝑢 · 𝑢𝑇

(10.4)

The magnitude can be calculated as a single line code - that

can be run on the command line - in which a vector is

multiplied using the matrix product with its own transpose

(figure 10.34).
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1 >> X = [4, -3, 6];
2 >> % Calculate the magnitude as the matrix product with

its transpose
3 >> magX = sqrt(X * X.')
4 magX =
5 7.8102
6

7 >> Figure 10.34: Dot product to calcu-

late the magnitude of a vector

The dot product can be used to calculate the angle between

two vectors.

𝑢 · 𝑣 = |𝑢 | |𝑣 | cos(𝜃)

𝜃 = cos
−1

(
𝑢 · 𝑣
|𝑢 | |𝑣 |

)
(10.5)

there are two different vectors then the dot product can be

used to calculate the The sample code in figure 10.35

demonstrates using the vector product to calculate the angle

between two vectors in 3-space.

Vectors calculations can be made both element-wise and

matrix wise. This puts the vector on the same level as scalars

in terms of calculation, but can vectors be compared to one

another? And what would comparing two vectors even

mean?
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Figure 10.35: Dot product to calcu-

late the angle between two vectors

1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Create two vectors
5 X = [4, -3, 6];
6 Y = [1, 5, -2];
7

8 % Calculate the magnitude of each of the two vectors
9 % Need to take the transpose of the second vector

10 magX = sqrt(X * X.');
11 magY = sqrt(Y * Y.');
12

13 % Calculate the dot product by multiplying two vectors
14 % Need to take the transpose of the second vector
15 dotProduct = X * Y.';
16

17 % Calculate the angle between the vectors
18 angle = acosd(dotProduct ./ (magX .* maxY);
19

20 % Print the results
21 fprintf('Angle: %0.2f degrees\n', angle);
22

23 end

1 >> driver( )
2

3 Angle: 122.52 degrees
4

5 >>

10.3 Vectors, Relational Operators, and
Comparison

Is it possible for a vector to be smaller, or larger than a scalar?

How about two vectors? Can one vector be smaller than the

second. In a basic sense - no. The magnitude of each vector

can be compared or the magnitude of a vector can be

compared to a scalar, but not the entire vector.

Comparing the magnitude of two vectors - or the magnitude

of a vector to a scalar is an application of the dot product. As

an example, figure 10.36 demonstrates how to determine if

the magnitude of one vector is larger than than other.

Since in engineering we often use vectors in their traditional

sense of a ray with direction and magnitude, this application

would be used to determine which vector is longer. But this

application is not a comparison of vectors as much as it is a

comparison of scalars - which we have done before.
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1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Create two vectors
5 X = [4, -3, 6];
6 Y = [1, 5, -2];
7

8 % Calculate the magnitude of each of the two vectors
9 % Need to take the transpose of the second vector

10 magX = sqrt(X * X.');
11 magY = sqrt(Y * Y.');
12

13 % Compare the vector magnitudes
14 if(magX > magY)
15 fprintf('Vector X is larger than Vector Y\n');
16 else
17 fprintf('Vector X is not larger than Vector Y\n');
18 else
19

20 end

1 >> driver( )
2

3 Vector X is larger than Vector Y
4

5 >> Figure 10.36: Comparing the mag-

nitude of two vectors

Comparing vectors as data structures is different from

comparing them as geometrical vectors. In the data structure

implementation vectors are compared element-wise. This

means that if a relational operation between two vectors, X
and Y will result in a third vector where each element

indicates with true or false (1 or 0)

In this example, figure 10.37, each element is compared with

the result being its logical value. Note
A useful addition to this would be

know how many of the elements

are zero or one. While we will later

see several functions that will do

this directly we could adapt the

code to provide us the number of

1s and the number of 0s. Recall

that the dot product of a vector

with itself will return a sum of the

squares of the elements. And since

all of the elements are either 1 or 0

then the sum of squares will be the

number of true values. If we then

subtract each element from 1 and

repeat it we will have the number

of zeros.

This same approach is used when comparing a vector to a

scalar. In this matter the scalar is expanded to the same

length of the vector and each element of the vector is then

compared to the same value. This can be used, as in the

example in figure 10.38, to see if all of the elements are above

some minimum value. And if they are not, which elements

fail the test.

Vector operations can be implemented both element-wise

and matrix wise. They can also be compared element-wise to

another vector or by scalar expansion to a single scalar. We

have developed these operations to be performed outside of
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Figure 10.37: Comparing the ele-

ments of two vectors

1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Create two vectors
5 X = [3, 4, -3, 6, 8, -7, -1, 9];
6 Y = [6, 1, 5, 9, 7, 2, -3, 4];
7

8 % Compare the vectors element-wise
9 % This will result in a vector of 0s an d1s

10 TorF = (X < Y)
11

12 % Number of ones
13 numOnes = TorF * TorF.'
14 % Number of zeros
15 numZeros = (1-TorF) * (1-TorF).'
16

17 end

1 >> driver( )
2

3 TorF =
4

5 1 0 1 1 0 1 0 0
6

7 numOnes = 4
8 numZeros = 4
9

10 >>

functions, but in keeping with our goal of top-down design

we need to be to hide them away within functions as well.
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1 function driver( )
2 % DRIVER driver( ) is the main or driver function
3

4 % Create two vectors
5 X = [5, -5, 2, 9, -1, 3, 0, 6];
6 a = 0;
7

8 % Compare the vector to the scalar
9 % This will result in a vector of 0s an d1s

10 TorF = (X >= a)
11

12 % Number of ones
13 numOnes = TorF * TorF'
14 % Number of zeros
15 numZeros = (1-TorF) * (1-TorF).'
16

17 end

1 >> driver( )
2

3 TorF =
4

5 1 0 1 1 0 1 1 1
6

7 numOnes = 6
8 numZeros = 2
9

10 >> Figure 10.38: Comparing the ele-

ments of a vector with a scalar

10.4 Vectors and Functions

The relationship between vectors and functions are similar to

those with scalars. Vectors can be passed as a parameter to a

function, and they can be returned as an output from a

function. But is also possible to have scalar inputs with vector

outputs, vector inputs with vector outputs, and vector inputs

with scalar outputs.

10.4.1 Functions that are passed vectors and
return vectors

Most functions in which a vector is passed returns a vector

consisting of the elements calculated using element-wise

operations. This is the case for any of the computation

functions like the trigonometry functions sin, cos, and tan.

This is the same for the algebraic functions such as log, exp.
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An example of a code in which a vector is passed to the cos
function and the return vector is then part of an additional

element-wise calculation is shown in figure 10.39.

Figure 10.39: Element-Wise Opera-

tions in Evaluating a Built-In Func-

tion

1 >> % Create vector
2 >> X = [0, 30, 45, 60, 90]
3 >> % Evaluate the cosine with angle in degrees
4 >> Y = cosd(X)
5 Y =
6 1.00000 0.86603 0.70711 0.50000 0.00000
7

8 >>

Element-wise calculations with a vector return are the

common result of most local and anonymous functions.

Figure 10.40: Element-Wise Calcu-

lations in an Anonymous Function

1 >> % Create the anonymous function
2 >> f = @(x) x.^2 + 3.*x - 10;
3 >> X = [-3, -2, -1, 0, 1, 2, 3, 4];
4 >> % Evaluate the function
5 >> Y = f(X)
6 Y =
7 -10 -12 -12 -10 -6 0 8 18
8

9 >>

It should not be assumed that functions that are passed and

return vectors are simply computational. There are many

applications in which you need to rearrange elements in a

vector or sort them in ascending - lowest to highest - or

descending - highest to lowest - order. These will be

addressed in section 10.5.

10.4.2 Functions that are passed scalars and
return vectors

Most of the functions with which we have dealt have been

computational; pass scalar values as input parameters -

calculate and returns another scalar. With vectors and

element-wise operations nothing changes. We pass a vector

or vectors to the function, and it uses them to calculate and

return another function.

But there are functions that are passed individual scalars and

these are used to create a vector.

The step size for a vector given the start and stop values with

a set number of elements could be calculated in a function



10.4 Vectors and Functions 203

Example: A common issue in creating a vector is determining
the correct step size for the range. Say you want a vector
with just five elements from 0 to 100. Many people would
erroneously say the step should be set at 20 but this would
create a vector with six elements. Close, but six is not five.
step should not have been set to 20 but instead to 25.

and the function could then create and return the vector with

the correct number of elements. The step size - or the number

of elements - can be calculated using the formula

step =
stop − start

𝑛 − 1

(10.6)

The number of elements is decreased by one, 𝑛 − 1, because

the divisor is not the number of elements but instead the

number of steps. For any vector there will always be one less

step than there are elements.

If needed, equation 10.6 can be solved for 𝑛 to determine the

number of elements.

𝑛 =

[ [
stop − start

step
+ 1

] ]
(10.7)

The formula in equation 10.6 can also be used to create a local

function that creates a vector. linspace(start, stop, n)
The sample code in figure 10.41

demonstrates how to create a vec-

tor from the overall range and the

number of elements. This code

does not include the necessary er-

ror checking - stop ≥ start and

𝑛 > 0 and and also an integer,

𝑛 ∈ ℤ. While we could add this,

there is already a built in function

to do that for us, linspace(start,
stop, n)

There is a built in function that does the same as the example

function V = makeLinearVector(start, stop, n). It is V =
linspace(start, stop, n).

In engineering it often occurs that we need a vector of values

that spaced logarithmically, not linearly. For example, instead

of a vector V = [0, 1, 2, . . . , 𝑛], the vector needed is

V = [10
0 , 10

1 , . . . , 10
𝑛]. This can be done using the

makeLinearVector function (or linspace) and the

element-wise power operator in figure 10.42. logspace(start, stop, n)
Much like linspace there is a built-

in function to create the loga-

rithmically space function. It is

logspace(start, stop, n).
Note
The built-in functions linspace
and logspace perform the same ac-

tions, so why create local function?

In this case it is a matter of gener-

alization. The built-in function is

convenient but the local function

can be adapted to, for example, a

binary growth function by chang-

ing V = 10.∧VLin to V = 2.∧VLin.

The sample function makeLogVector performs the same

operation as calling the built-in function VLog =
logspace(start, stop, n);

There are several functions similar to linspace and logspace
but they are designed to return matrices. But they are useful

enough in creating vectors to adapt them here. Three in

particular are zeros, ones, and rand. So while we can use

them as matrix functions and then force them to create
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Figure 10.41: Creating a Linearly

Spaced Vector

1 function V = makeLinearVector(start, stop, n)
2 % MAKELINEARVECTOR V = makeLinearVector(start, stop, n)

creates
3 % a row vector with elements spaced linearly starting

at start and stopping
4 % at stop with n elements
5

6 % Calculate the step size
7 step = (stop - start) ./ (n - 1);
8

9 % Create the vector
10 V = [start:step:stop];
11

12 end

1 >> X = makeLinearVector(3, 17, 8)
2

3 X =
4

5 3 5 7 9 11 13 15 17
6 >>

Figure 10.42: Creating a Logarith-

mically Spaced Vector

1 function v_log = make_log_vector(start, stop, n)
2 % MAKE_LOG_VECTOR V = make_log_vector(start, stop, n)

creates
3 % a row vector starting at 10.^start and stopping at

10.^stop with n elements
4 %. logarithmically spaced
5

6 % Create a linear vector
7 v_lin = makeLinearVector(start, stop, n);
8

9 % Element-Wise Power Operator
10 v_log = 10.^v_lin;
11

12 end

1 >> X = make_log_vector(0, 3, 8)
2

3 X =
4

5 1.0000 5.6234 31.6228 177.8279
1000.0000

6 >>

vectors, we could just write our own local functions that

create the vector directly.

The first two are easy. We can set start = 0, and stop = 𝑛 and

then fill the elements with the value 0 or 1.
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1 function zeroVector = makeZeroVector(n)
2 % MAKEZEROVECTOR zeroVector = makeZeroVector(n) creates

a row
3 % vector starting of n elements all with the value 0
4

5 % Set start to 1 and use n for stop and use scalar
expansion to

6 % fill all of the elements with zero
7 zeroVector[1:n] = 0;
8

9 end

1 >> Z = makeZeroVector(7)
2

3 Z =
4

5 0 0 0 0 0 0 0
6 >> Figure 10.43: Creating a Zero Vec-

tor

While 0 and 1 are commonly used when creating an

accumulator for sums or products, this technique can be used

to create a vector with any starting value. For a different

starting value, you change the assignment value in the

function.

This type of function can actually be generalized for such as

case by passing two input parameters to the function. The

first is for the number of elements while the second is the

value. If the user wants a default value, such as 0 then the

function can use the nargin variable to overload it. An

example of this is shown in figure 10.44.

10.4.3 Functions that are passed vectors and
return scalars

There are a class of functions that when they are passed a

vector of data they analyze the vector and return some value

based upon that analysis.

Probably the most useful of this type of function is one that

calculates the number of elements in the vector. A function

that is passed a vector could then count the number of

elements using a for loop that iterates through the vector

each time updating an accumulator. Warning
MatLab provides a built-in func-

tion, length, that does the same

operations as in the local function

in figure 10.45. As such there is

little reason to add the local func-

tion to a program. Instead call n =
length(X); directly when you need

to know the number of elements.

It makes little sense to add this local function to a program

since it has already been written and is built-in. The built-in

function is length(X)

length
The built-in function, length, re-

turns the number of elements in a

vector.
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Figure 10.44: Creating a Vector

with a single repeated value

1 function valueVector = makeValueVector(n, a)
2 % MAKEVALUEVECTOR valueVector = makeValueVector(n)

creates a
3 % row vector with n elements all with the value a
4

5 % Check nargin. If nargin == 1 then default to 0
6 if((nargin < 1) | (nargin > 2))
7 % Exit with run time error for improper number of

parameters
8 error('Incorrect number of inputs to

makeValueVector');
9 elseif(nargin == 1)

10 % Set to the default of 0
11 a = 0;
12 end
13 % Set start to 1 and use n for stop and use scalar

expansion to
14 % fill all of the elements with a
15 valueVector[1:n] = a;
16

17 end

1 >> V = makeValueVector(7, 3)
2

3 V =
4

5 3 3 3 3 3 3 3
6 >>

While you would probably not write this function, it

demonstrates how a function can be passed a vector and then

analyze the vector returning a result. There are many such

direct applications that could be written but because of the

utility have already been included as built-in functions.

An example of this has already been demonstrated with the

calculation of the dot product. This can be rewritten as a

function; either a local function or an anonymous function.
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1 function n = length(X)
2 % LENGTH n = length(X) counts the number of
3 % elements in a vector
4

5 % Set the accumulator to 0
6 n = 0;
7

8 % Use a for loop to iterate through the vector
9 for k = X

10 % Update the accumulator
11 n = n + 1;
12 end
13

14 end

1 >> n = length([6 2 3 8 1 0 9 3])
2 n =
3

4 8
5

6 >> Figure 10.45: Function to return

the number or elements in a vector
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Figure 10.46: Dot Product Func-

tion

1 function dp = dotProduct(X, Y)
2 % DOTPRODUCT dp = dotProduct(X, Y) calculates the dot
3 % product of two vectors - it checks that the first

vector is a row
4 % and the second a column vector before doing the

calculation
5

6 % Check nargin. If nargin == 1 then default to 0
7 if((nargin < 1) | (nargin > 2))
8 % Exit with run time error for improper number of

parameters
9 error('Incorrect number of inputs to

makeValueVector');
10 elseif(nargin == 1)
11 % Set to the default of 0
12 a = 0;
13 end
14 % Set start to 1 and use n for stop and use scalar

expansion to
15 % fill all of the elements with a
16 valueVector[1:n] = a;
17

18 end

1 >> V = makeValueVector(7, 3)
2

3 V =
4

5 3 3 3 3 3 3 3
6 >>
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10.5 Sorting Elements in a Vector

If often occurs that the elements in a vector are not were we

would like them to be. Perhaps two or more elements should

be rearranged, or an entire vector needs to be sorted in either

ascending or descending order. There is a built-in function to

sort the elements of a vector in ascending order, but perhaps

you need the vector in descending order. Or you only need

several elements rearranged. In these cases you might want

to customize the control of the elements.

10.5.1 Swapping elements in a vector

Sorting elements in a vector begins with being able to swap
them. As an example, we want to swap the element at index

𝑘 with the element at index 𝑗. This function, let’s call it swap,

will require three inputs; a vector, and the two indices for the

elements to be swapped. Note
A common error in a swap is omit-

ting the intermediate temp variable.

An analogy is to imagine a farmer

with a pen of chickens and another

with feed for the chickens to eat.

He needs to swap the chickens and

the feed. If he put the chickens di-

rectly in with the feed they would

start to eat the feed. Similarly if he

put the feed directly in with the

chickens. Instead he needs a tem-

porary third pen. He then trans-

fers the chickens to the temporary

pen. He then moves the feed to the

now empty pen that previously

was full of chickens. Once the feed

has been moved he can then trans-

fer the chickens over to their new

pen - and then remove the tempo-

rary enclosure.

The swap function has multiple applications but probably the

most common is in sorting the elements of a vector.

10.5.2 Sorting a vector

sort
The sort function is passed a vector,

either a row vector or a column vec-

tor, and it returns the vector sorted

in ascending order. The syntax is

V_sorted = sort(V_unsorted);

If the input and output vectors are

the same the original will be re-

placed. But if they are different

then there will be two instances

of the vector - one sorted and one

not.

Vectors that are created using a range are already sorted;

lowest to highest or highest to lowest. But if the vector was

created by enumerating the elements or appending data, or if

data is inserted into a vector it may no longer be sorted.

There is a built-in function, sort, that will sort a vector in

ascending order, but you may want to sort the data in

descending order, or perhaps only sort every other element.

As such there are many different types of sorts as well as

techniques to sort the vectors.

A common, and easy to code - sort algorithm is called the

bubble sort. This technique uses a pair of nested for loops. In

this method the outer loop steps through the 1
st

through

𝑛 − 1
st

element of the vector. Each iteration starts the inner

loop which compares the outer loop element to each element

of the vector from the 𝑘 + 1
st

to the 𝑛th
element. At each step

if the elements are out of order then they are swapped - can

be done with the swap function.
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Start

Assign V( k ) to temp

Assign V( j ) to V( k )

Assign temp to V( j )

End

function V = swap(V, k, j)

1 function V = swap(V
, k, j)

2 % SWAP V = swap(V,
k, m) swaps
the

3 % elements in
index k of the
vector

4 % V with index j
of the same
vector

5

6 % Copy first
element to a
temp

7 % variable
8 temp = V(k);
9 % Reassign the

first element
10 % with the

value in the
second

11 V(k) = V(j);
12 % Reassign the

second element
13 % with the

value in temp
14 V(j) = temp;
15

16 end

1 >> X = [1:5]
2 X =
3

4 1 2 3
4 5

5

6 >> X = swap(X,
2, 5)

7 X =
8

9 1 5 3
4 2

10 >>

Figure 10.47: Function to swap elements
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Start

for

𝑘 = 1 :

𝑛 − 1

for

𝑗 = 𝑘+
1 : 𝑛

𝑉(𝑘) >
𝑉(𝑗)

swap(V, k, j);

End

function V = bubbleSort(V)

1 function V =
bubbleSort(V)

2 % BUBBLESORT V =
bubbleSort(V)
uses

3 % a bubble sort
algorithm to
sort

4 % the vector from
lowest to
highest

5

6 % Outer loop
7 for k = 1:length

(V) - 1
8 % Start

inner loop
9 for j = k+1:

length(V)
10 % Check

order
11 if(V(k) >

V(j))
12 % Out

of order so
swap

13 V =
swap(V, k, j);

14 end % End
of if

15 end % End
of inner loop

16 end % End of
outer loop

17

18 end

1 >> X = [4, 1,
5, 3, 2]

2 X =
3

4 4 1
5 3
2

5

6 >> X =
bubbleSort
(X)

7 X =
8

9 1 2
3 4
5

10 >>

Figure 10.48: Bubble sort function
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warning, 134
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accumulator, 163

accuracy, 2

Ada Lovelace, 4

address, 54

algorithm, 16

algorithmic complexity, 25

anonymous function, 100

Antikythera Mechanism, 3

appending elements to a vector, 189

array, 157

assembly language, 41

assignment, 55

assignment operator, 55

base case, 136, 137

baseball, 15

binary search, 27

black swan effect, 35

boolean, 117

bubble sort, 28, 209

calendar, 3

carriage return, 71

Central Processing Unit, 41

character, 57

chronograph, 3

code, 51, 59

coding, 51

combinations, 143

combinatorics, 143

comparison sort, 28

compiled, 44

compiler, 45

computational complexity, 25

computational science, 13

computer program, 8, 18

computing, 1

concatenation, 103
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cubit, 2

data, 13, 14

data stream, 9

data structure, 179

data type, 57

debugging, 62

decimal point, 67

disp, 63

dot operator, 52

dot product, 196

dynamic programming, 18

dynamic vector, 189

echoing, 62

element, 157

element-wise, 53

encapsulation, 107

engineering design process, 30

ENIAC, 7

enumeration, 158

escape sequence, 66, 70

executable, 46

flag, 62

floating point, 57

format, 64

function, 84

function call, 85

function definition, 91

function handle, 92

function signature, 88

functional programming, 84

global variable, 110

greatest integer function, 183

hard coding, 60

hardware, 8

Heaviside function, 121

Hello World, 59

hierarchical chart, 83

high-level language, 42

identifier, 54

infinite loop, 173

infinite recursion, 139

information, 13, 15

information hiding, 107

input, 72

input parameters, 93

inserting elements into a vector, 189

instance, 180

instantiate, 180

integer, 57

interactively, 51

interpreted, 44, 59

iterative loop, 156

iterator, 156

keyword, 56

lifetime, 107

LIFO, 138

linear programming, 18

list, 157

local function, 91

local variable, 108

log-linear time, 28

logical, 56

logical value, 117

loop, 147

low-level language, 40

machine code, 40

mathematical programming, 18

Matlab, 51

matrix, 53

mean, 27

median, 26

mutable, 186

named function, 84

nested function, 98

nested loop, 166

newline, 66

Newton - Raphson Method, 151

nominal, 15

number of elements, 176

object code, 46

object-oriented, 43

off by one error, 175



one-trick pony, 40

overloaded function, 87

pass, 147

pass by value, 108

PEMDAS, 53

permutations, 143

PERT, 83

platform dependence, 46

pointer, 156

polynomial time, 28

portability, 39

post-test loop, 152

pre-test loop, 150, 152

precision, 2, 66

procedural, 43

procedural programming, 84

program, 8, 18

programming model, 43

Project Evaluation Review Technique, 83

protractor, 3

pseudo code, 18

quadratic time, 28

quipu, 1

radix, 67

recursion, 131

reference, 54

relational operations, 116

repetition, 147

repetition structure, 23

rounding, 69

ruler, 2

run lines, 47

runtime error, 35

scalar expansion, 187

scalar product, 196

scalars, 53

scope, 106

script, 47, 59

selection structure, 21

sequential structure, 20

set, 157

sextant, 3

software, 9, 39

source code, 45

splash screen, 94

stack memory, 137

stack overflow, 138

static variable, 110

step, 127

step function, 118

stopping condition, 136, 137

stopping criteria, 136

string concatenation, 103

sub-linear time, 28

sundial, 3

syntax error, 34

tab stop, 71

teaching a dog to swim, 32

trace, 172

traveling salesman problem, 29

truth value, 116, 117

variable, 54, 56

variable address, 54

variable identifier, 54

variable nomenclature, 56

variable reference, 54

vector, 157, 180

visibility, 106

wrapper function, 97
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