"

3 Static Equilibrium Analysis: Using Matrix Algebra

3.1 An Introduction to matrices

Practice Problems

Problem 3.1.1: Write the following system of equations as a set of matrices:

3x-y+2z=4
-x+4y+9z=-7
-4x-y+z=5

Solution:

\begin{bmatrix}3 & -1 & 2 \\ -1 & 4 & 9 \\ -4 & -1 & 1\end{bmatrix} \begin{bmatrix} x \\ y \\ z\end{bmatrix}=\begin{bmatrix} 4 \\ -7 \\ 5\end{bmatrix}

Problem 3.1.2: Write the following system of equations as a set of matrices:

2t-5u-6v+2w=4
-t+u+2v-w=6
5t+2u+4w=1
3u-v+w=0

Solution:

\begin{bmatrix} 2 & -5 & -6 & 2 \\ -1 & 1 & 2 & -1 \\ 5 & 2 & 0 & 4 \\ 0 & 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} t \\ u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 1 \\ 0\end{bmatrix}

External Resources

Khan Academy: Introduction to Matrices

3.2 Matrix arithmetic

Practice Problems

Problem 3.2.1: Conduct each of the operations below given the following matrices:

A=\begin{bmatrix}3 & 1 & 0 \\ 2 & -3 & -1\\0 & 6 & 2\end{bmatrix}, B=\begin{bmatrix}0 & -2 & 3\\5 & 1 & 4\\2 & 0 & -5\end{bmatrix}, C=\begin{bmatrix} -4 & 2 & -5\\0 & -3 & 2\\2 & 4 & -3\end{bmatrix}

a) A+C
b) 2B
c) A+B+C
d) 2C-A
e) 4C-2B
f) 3(B-A)

Solutions:

a) \begin{bmatrix} 3 & -1 & 3 \\ 7 & -2 & 3 \\ 2 & 6 & -3\end{bmatrix}

b) \begin{bmatrix} 0 & -4 & 6 \\ 10 & 2 & 8 \\ 4 & 0 & -10 \end{bmatrix}

c) \begin{bmatrix} -1 & 1 & -2 \\ 7 & -5 & 5 \\ 4 & -10 & 6 \end{bmatrix}

d) \begin{bmatrix} -11 & 3 & -10 \\ -2 & -3 & 5 \\ 4 & 2 & -8 \end{bmatrix}

e) \begin{bmatrix} -16 & 12 & -26 \\ -10 & -14 & 0 \\ 4 & 16 & -2 \end{bmatrix}

f) \begin{bmatrix} -9 & -9 & 3 \\ 9 & 12 & 15 \\ 6 & -18 & -21 \end{bmatrix}

Problem 3.2.2: Conduct each of the operations below given the following matrices (the same as in problem 3.2.1):

A=\begin{bmatrix}3 & 1 & 0 \\ 2 & -3 & -1\\0 & 6 & 2\end{bmatrix}, B=\begin{bmatrix}0 & -2 & 3\\5 & 1 & 4\\2 & 0 & -5\end{bmatrix}, C=\begin{bmatrix} -4 & 2 & -5\\0 & -3 & 2\\2 & 4 & -3\end{bmatrix}

a) AC

Solution:

\begin{bmatrix} -12 & 3 & -13 \\ -10 & -9 & -1 \\ 4 & -10 & 6 \end{bmatrix}

b) BC

Solution:

\begin{bmatrix} 6 & 18 & -13 \\ -12 & 23 & -35 \\ -18 & -16 & 5 \end{bmatrix}

c) 2BC

Solution:

\begin{bmatrix} 12 & 36 & -26 \\ -24 & 46 & -70 \\ -36 & -32 & 10 \end{bmatrix}

d) CB

Solution:

\begin{bmatrix} 0 & 10 & 21 \\ -11 & -3 & -22 \\ 14 & 0 & 37 \end{bmatrix}

e) 2A(B+C)

Solution:

\begin{bmatrix} -14 & -4 & 0 \\ -54 & 4 & -28 \\ 76 & -8 & 40 \end{bmatrix}

f) C(2A-B)

Solution:

\begin{bmatrix} -16 & -90 & 45 \\ -1 & 45 & 36 \\ 14 & -56 & -57 \end{bmatrix}

Problem 3.2.3: Can we multiply the following matrices? If not, why? If so, find the product.

\begin{bmatrix}1 & 0 & 3 & -1\end{bmatrix}\times\begin{bmatrix}2 \\ 1 \\ 3 \\ 6\end{bmatrix}

Solution: Yes.

\begin{bmatrix} 5 \end{bmatrix}

Problem 3.2.4: Can we multiply the following matrices? If not, why? If so, find the product.

\begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}\times\begin{bmatrix} 0 & 3 \\ 2 & -1 \\ 3 & 3\end{bmatrix}

Solution: No. (2 columns for the first matrix and 3 rows for the second matrix.)

Problem 3.2.5: Can we multiply the following matrices? If not, why? If so, find the product.

\begin{bmatrix} 3 & 2 & 4 & 0 \\ 0 & 1 & -3 & -2 \end{bmatrix}\times\begin{bmatrix} 4 \\ 1 \\ 2 \\ -1\end{bmatrix}

Solution: Yes.

\begin{bmatrix} 22 \\ -3 \end{bmatrix}

Problem 3.2.6: Can we multiply the following matrices? If not, why? If so, find the product.

\begin{bmatrix} 0 \\ 3 \\ -2\end{bmatrix} \times \begin{bmatrix} 2 \\ 3 \\ -1\end{bmatrix}

Solution: No. (1 column for the first matrix and 3 rows for the second matrix.)

External Resources

Khan Academy: Adding and Subtracting Matrices

Khan Academy: Scalar Multiplication

Khan Academy: Intro to Matrix Multiplication

Khan Academy: Multiplying Matrices

Khan Academy: Is Matrix Multiplication Commutative?

Khan Academy: Associative Property of Matrix Multiplication

Khan Academy: Zero Matrix

3.3 The transposE, identity, and inverse matrices

Practice Problems

Problem 3.3.1: Find the transpose of the following matrix. Is it symmetric, skew, or neither?

\begin{bmatrix} 3 & 0 & 1\\1 & 0 & 3\\0 & 3 & 1\end{bmatrix}

Solution:

\begin{bmatrix} 3 & 1 & 0 \\ 0 & 0 & 3 \\ 1 & 3 & 1\end{bmatrix}

Neither.

Problem 3.3.2: Find the transpose of the following matrix. Is it symmetric, skew, or neither?

\begin{bmatrix} 3 & -2 & 4\\-2 & 6 & 2\\4 & 2 & 3\end{bmatrix}

Solution:

\begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{bmatrix}

Symmetric.

Problem 3.3.3: Find the transpose of the following matrix. Is it symmetric, skew, or neither?

\begin{bmatrix} 2 & 1 & 3 & 4\\3 & -1 & -2 & 2\\0 & 1 & 3 & 2\end{bmatrix}

Solution:

\begin{bmatrix} 2 & 3 & 0 \\ 1 & -1 & 1 \\ 3 & -2 & 3 \\ 4 & 2 & 2\end{bmatrix}

Neither.

Problem 3.3.4: Find the transpose of the following matrix. Is it symmetric, skew, or neither?

\begin{bmatrix} 0 & 1 & -2\\-1 & 0 & 3\\2 & -3 & 0\end{bmatrix}

Solution:

\begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & 3 & 0\end{bmatrix}

Skew.

Problem 3.3.5: Find the transpose of the following matrix. Is it symmetric, skew, or neither?

\begin{bmatrix} 3 & -1 & 0 & 4\\-1 & 2 & 1 & 5\\0 & 1 & -4 & -2\\4 & 5 & -2 & 6\end{bmatrix}

Solution:

\begin{bmatrix} 3 & -1 & 0 & 4 \\ -1 & 2 & 1 & 5 \\ 0 & 1 & -4 & -2 \\ 4 & 5 & -2 & 6\end{bmatrix}

Symmetric.

Problem 3.3.6: Consider the following matrices:

A=\begin{bmatrix} 1 & 0 & 3\\2 & -2 & 3\end{bmatrix}, B=\begin{bmatrix}1 & 3 & 2 & 0\end{bmatrix}, C=\begin{bmatrix}3 & 0\\2 & -1\end{bmatrix}.

For each, determine what identity matrix is needed for both left-side multiplication (ex: IA) and right-side multiplication (ex: AI). Show that the identity matrix works.

Solution: For AI, use the 3×3 identity matrix. For IA, use the 2×2 identity matrix. For BI, use a 4×4 identity matrix. For IB, use a 1×1 identity matrix. For CI, use a 2×2 identity matrix. For IC, use a 2×2 identity matrix.

Problem 3.3.7: Determine if matrices A and B are inverses of each other.

A=\begin{bmatrix}2 & 1\\0&1\end{bmatrix} B=\begin{bmatrix}1/2 & -1/2 \\ 0 & 1\end{bmatrix}

Solution: Yes.

Problem 3.3.8: Determine if matrices A and B are inverses of each other.

A=\begin{bmatrix}3 & 0\\1 & 2\end{bmatrix} B=\begin{bmatrix}0 & 3\\0 &2\end{bmatrix}

Solution: No.

Problem 3.3.9: Determine if matrices A and B are inverses of each other.

A=\begin{bmatrix}0 & 1 & 1\\1 & 1 & 1\\0 & 0& 1\end{bmatrix} B=\begin{bmatrix}-1 & 1 & 0\\1 & 0 & -1\\0 & 0 & 1\end{bmatrix}

Solution: Yes.

External Resources

Khan Academy: Introduction to the Identity Matrix

Khan Academy: Dimensions of an Identity Matrix

Khan Academy: Using Identity and Zero Matrices

3.4 determinants: An Introduction

Practice Problems

Problem 3.4.1: Find the determinant of the following 2×2 matrices.

a) \begin{bmatrix} 2 & -2 \\ 3 & 3\end{bmatrix}
b) \begin{bmatrix}5 & -3 \\ 1 & 6\end{bmatrix}
c) \begin{bmatrix} 0 & -2\\3 & 5\end{bmatrix}
d) \begin{bmatrix} -6 & -4 \\ 2 & 5\end{bmatrix}
e) \begin{bmatrix} 1 & -5 \\ 9 & 2 \end{bmatrix}
f) \begin{bmatrix} -4 & 7 \\ -2 & 5\end{bmatrix}

Solutions: 12, 33 ,6, -22, 47, -6

Problem 3.4.2: Find the determinant of the following 3×3 matrix using both Laplace expansion and the diagonalization shortcut.

\begin{bmatrix} 1 & 5 & 2\\3 & 1 & 1\\0 & 2 & 2\end{bmatrix}

Solution: -18

Problem 3.4.3: Find the determinant of the following 3×3 matrix using both Laplace expansion and the diagonalization shortcut.
\begin{bmatrix} 1 & 4 & -2\\1 & 1 & 0\\0 & 3 & 1\end{bmatrix}

Solution: -9

Problem 3.4.4: Find the determinant of the following 3×3 matrix using both Laplace expansion and the diagonalization shortcut.
\begin{bmatrix} 5 & 3 & 1\\ -2 & 4 & 2\\ 1 & 0 & 2\end{bmatrix}

Solution: 54

Problem 3.4.5: Find the determinant of the following 3×3 matrix using both Laplace expansion and the diagonalization shortcut.
\begin{bmatrix} 4 & 2 & 0\\ 0 & 2 & 0 \\ 3 & 1 & -1\end{bmatrix}

Solution: -8

Problem 3.4.6: Find the determinant of this 4×4 matrix. I will not ask you to do something like this on an exam!

\begin{bmatrix} 3 & 0 & 1 & 1 \\ -1 & 3 & 2 & 2\\ 0 & -3 & 4 & 1\\ 1 & 2 & -1 & 0\end{bmatrix}

Solution: 23

Problem 3.4.7: Verify
det(A)\times det(B)=det(AB)

using the following matrices:

A=\begin{bmatrix} 3 & 1\\-1 & 4\end{bmatrix}, B=\begin{bmatrix} 2 & 0 \\1& 1\end{bmatrix}

Solution: Determinant is 26 (13×2)

Problem 3.4.8: Does the following matrix have an inverse? If it does…DO NOT FIND THE INVERSE!

\begin{bmatrix} 2 & 4 \\ -1 & -1\end{bmatrix}

Solution: Yes. (Determinant = 2)

Problem 3.4.9: Does the following matrix have an inverse? If it does…DO NOT FIND THE INVERSE!

\begin{bmatrix} 1 & 5\\2 & 10\end{bmatrix}

Solution: No. (Determinant = 0)

Problem 3.4.10: Does the following matrix have an inverse? If it does…DO NOT FIND THE INVERSE!

\begin{bmatrix} 3 & 0 & 2\\1 & -3 & 2\\9 & 0 & 6\end{bmatrix}

Solution: No. (Determinant = 0)

Problem 3.4.11: Does the following matrix have an inverse? If it does…DO NOT FIND THE INVERSE!

\begin{bmatrix} 1 & 3 & 3\\1 & 3 & 0\\1 & 0 &3\end{bmatrix}

Solution: Yes. (Determinant = -9)

External Resources

Khan Academy: Determinant of a 2×2 Matrix

Khan Academy: Determinant of a 3×3 Matrix: Standard Method (Laplace Expansion)

Khan Academy: Determinant of a 3×3 Matrix: Shortcut Method

Khan Academy: Intro to Matrix Inverses

Khan Academy: Determining Invertible Matrices

3.5 Determinants: Finding the inverse

Practice Problems

Problem 3.5.1: Find the inverse of the following matrix, if it exists, using Laplace Expansion (using the adjoint matrix).

\begin{bmatrix} 3 & 1 \\ 1 & 2\end{bmatrix}

Solution:

\begin{bmatrix} 2/5 & -1/5 \\ -1/5 & 3/5 \end{bmatrix}

Problem 3.5.2: Find the inverse of the following matrix, if it exists, using Laplace Expansion (using the adjoint matrix).

\begin{bmatrix} 5 & 0 \\ 3 & -1\end{bmatrix}

Solution:

\begin{bmatrix} 1/5 & 0 \\ 3/5 & -1\end{bmatrix}

Problem 3.5.3: Find the inverse of the following matrix using Laplace Expansion (using the adjoint matrix).

\begin{bmatrix} 4 & 2 \\ 2 & 1\end{bmatrix}

Solution:

Not invertible.

Problem 3.5.4: Find the inverse of the following matrix using Laplace Expansion (using the adjoint matrix).

\begin{bmatrix} 2 & 0 & 2\\ 1 & 1 & 1\\ 0 & 3 & 1\end{bmatrix}

Solution:

\begin{bmatrix} -1 & 3 & -1 \\ -1/2 & 1 & 0 \\ 3/2 & -3 & 1 \end{bmatrix}

Problem 3.5.5: Find the inverse of the following matrix using Laplace Expansion (using the adjoint matrix).

\begin{bmatrix} -1 & 2 & 4 \\ 0 & 1 & 1\\3 & 1 & 1\end{bmatrix}

Solution:

\begin{bmatrix} 0 & -1/3 & 1/3 \\ -1/2 & 13/6 & -1/6 \\ 1/2 & -7/6 & 1/6\end{bmatrix}

Problem 3.5.6: Find the solution of the following system of equations using Laplace Expansion.

4x+2y=-10
3x+9y=0

Solution: x=-3, y=1

Problem 3.5.7: Find the solution of the following system of equations using Laplace Expansion.

-x+2y=-1
5x-10y=6

Solution: No solutions exist.

Problem 3.5.8: Find the solution of the following system of equations using Laplace Expansion.

4x+2y=8
5x+3y=9

Solution: x=3, y=-2

Problem 3.5.9: Find the solution of the following system of equations using Laplace Expansion.

5x-2y+3z=20
2x-4y-3z=-9
x+6y-8z=21

Solution: x=5, y=4, z=1

Problem 3.5.10: Find the solution of the following system of equations using Laplace Expansion.

2x+3y-6z=1
-4x-6y+12z=-2
x+2y+5z=10

Solution: No solution exists.

Problem 3.5.11: Find the solution of the following system of equations using Laplace Expansion.

2x-y-z=3
x+y=-1
3x-y-2z=7

Solution: x=-1, y=0, z=-5

External Resources

Khan Academy: Finding 2×2 Inverse Using Determinant

Khan Academy: Solving Linear Systems with Matrix Equations

3.6 Cramer’s Rule

Practice Problems

Problem 3.6.1: Find the solution to the following system of equations using Cramer’s Rule.

4x+2y=-10
3x+9y=0

Solution: x=-3, y=1

Problem 3.6.2: Find the solution to the following system of equations using Cramer’s Rule.

-x+2y=-1
5x-10y=6

Solution: No solution exists.

Problem 3.6.3: Find the solution to the following system of equations using Cramer’s Rule.

4x+2y=8
5x+3y=9

Solution: x=3, y=-2

Problem 3.6.4: Find the solution to the following system of equations using Cramer’s Rule.

5x-2y+3z=20
2x-4y-3z=-9
x+6y-8z=21

Solution: x=5, y=4, z=1

Problem 3.6.5: Find the solution to the following system of equations using Cramer’s Rule.

2x+3y-6z=1
-4x-6y+12z=-2
x+2y+5z=10

Solution: No solution exists.

Problem 3.6.6: Find the solution to the following system of equations using Cramer’s Rule.

2x-y-z=3
x+y=-1
3x-y-2z=7

Solution: x=-1, y=0, z=-5

External Resources

No external resources for this section.

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Student Companion for Mathematical Economics Copyright © by J. Zachary Klingensmith is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.