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Introduction 

The inspiration for this text grew out of a simple question that emerged over a number of years of teaching math to 
Middle School, High School and College students. 

Practically speaking, what is the origin of a particular polynomial? 
So much time is spent analyzing, factoring, simplifying and graphing polynomials that it is easy to lose sight of the 

fact that polynomials have a wealth of practical uses. Exploring the techniques of interpolating data allows us to view 
the development and birth of a polynomial. This text is focused on laying a foundation for understanding and applying 
several common forms of polynomial interpolation. The principal goals of the text are: 

1. Breakdown the process of developing polynomials to demonstrate and give the student a feel for the process and 
meaning of developing estimates of the trend (s) a collection of data may represent. 

2. Introduce basic matrix algebra to assist students with understanding the process without getting bogged down in 
purely manual calculations. Some manual calculations have been included, however, to assist with understanding 
the concept. 

3. Assist students in building a basic foundation allowing them to add additional techniques, of which there are many, 
not covered in this text. 

What this text is not: 
It is not a comprehensive survey of interpolation techniques. 
The techniques presented are ones the author believes will provide a basic understanding of polynomial interpolation 

that students can build upon. There are many flavors and sub flavors of interpolation and I encourage students who are 
interested to check them out. 

It is not a lesson in using interpolation apps: 
Quite the opposite. By engaging in exercising calculations, the student is better equipped to understand how and why 

these techniques work. 
What is polynomial interpolation? 
We experience information in discreet ways. 
Typically, it comes from measurements or observations. However, what we often want to do is look at a continuous 

process the data represents; all at once or at least at any point we choose. While we cannot represent a continuous 
process with a single number we can do so with an equation. Graphically this equation could be a single point (not 
usually that interesting). A straight line (degree one polynomial), a curved line (degree two polynomial) that we often 
call a quadratic equation or parabola; or some higher degree that graphically, often begins to look like a wave repeating 
itself. 

When dealing with data the specific numbers always represent a snapshot. For example, if we measure rainfall and 
wind speed each day for a year, we have a collection of data points that compare rainfall to wind speed. We might ask if 
there is a relationship between wind speed and rainfall. For example, hurricane force winds are usually accompanied by 
heavy rainfall. It would be nice to develop an equation that can predict rainfall when high winds are expected. Normally 
someone analyzing this data would plot the points on the x, y coordinate plane. In this text, the sample data used to 
illustrate the various interpolation methods will be plotted in this way. 

Can the math stand alone? Most certainly not. The challenge for someone utilizing interpolation techniques is to 
apply expertise and experience to determine the most appropriate polynomial structure. In other words, is the model 
most likely to accurately (or at least reasonably) produce useful estimated values? This is what I mean by the “Art” of 
polynomial interpolation. 

Interpolation uses a known set of independent and dependent values to estimate other dependent values, typically 
along a continuous line represented by a polynomial. Technically if you use the model to identify additional data points 
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outside of the range of the given points this is known as extrapolation. Our focus will be on interpolation within the 
given range. 

Adaptations of the techniques we explore have been used in pre-computer times to generate tables of trig or log 
values used in applications such as navigation. Nowadays they are adapted for use by computers and calculators and 
they are an important part of the tool kit researchers use to predict future events such as emerging storms tracks, 
climate change, political elections, changing demographics, spread of disease, and so forth. 

We will explore five Interpolation techniques: Elimination (Substitution), Newton’s Divided Difference, Splines, Least 
Squares and Taylor Series. 
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Techniques 

A Brief Explanation of the Techniques Presented in This Text 

A) Elimination (Substitution) (or solving a linear system of n equations with n 
unknowns) 

Essentially this technique utilizes a process known to high school Algebra One students: Elimination (or substitution). 
This allows for solving a set of n-unknown variables in a set of n-equations. 

B) Newton’s Divided Difference 

Newton’s Divided Difference interpolation has many applications. Historically it and similar techniques have been used 
to develop trigonometric and logarithmic tables. 

An important advantage is that if you start out with a handful of known points plotted on a coordinate plane you can 
decide on an appropriate degree polynomial that would be representative of the general trend. A benefit is that any new 
given points can easily be added one at a time thus increasing the degree of the polynomial for each new point added, 
without having to start over. 

C) Splines 

Splines interpolation is a great technique to employ if there are certain discreet points that modify the nature of the 
trend. For example, the trajectory of a rocket launch could be broken into segments: Launch to Stage One separation, 
interval to Stage Two separation, a major scheduled course adjustment and so on. Each of the resulting intervals could be 
represented by a separate polynomial. Spline interpolation creates just such separate polynomials while at the same time 
recognizing the continuity inherent in the event and building that into the resulting set of equations that collectively 
represent the event. A variation of this would be a single spline developed in a sub-interval of the domain that is of 
particular interest. 

D) Least Squares Regression 

Polynomial Least Squares regression is useful for fitting a polynomial such as a quadratic equation to many data 
points ensuring that each point influences the resulting polynomial in such a manner that the resulting polynomial is 
considered a best fit for that set of data. 
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E) Taylor Series Polynomial 

A technique that employs use of the Taylor Series to develop a polynomial that approximates the actual function at and 
near a given domain value. It does not require a set of data points. The major limitation is that it works for a limited class 
of functions. 

Note there are plenty of applications that will provide the desired results very quickly. However, this textbook is 
meant to assist students with an understanding of the computations and reasons for them. Included are the manual 
calculations with explanation as well as basic Matrix commands that students can use to mirror the manual calculations. 

Let’s look at a simple example. 
Assumption: The faster a car is driven the lower the fuel efficiency. 

Sample Vehicle Fuel Efficiency Measurements 

X (Miles per Hour) 
MPH 

Y (Miles per Gallon) 
MPG 

45 43 

55 42 

65 38 

75 32 

Long Description 

Chart of Sample Vehicle Speed 
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Figure 1 – Comparing Linear to Quadratic Interpolation Methods 

Long Description 

Figure 1 - Comparing Linear to Quadratic Interpolation Methods 

 
The above plot suggests two likely scenarios. The question is: Which more accurately represents what is really 

happening? 
Linear: Pick two points that seem reasonable and draw a straight line (red) through them. 
Quadratic: Someone else looking at the data might conclude the curved line (blue) is more reasonable and accurate. 
Visually we would conclude that the quadratic is mathematically a better fit because the curve is significantly closer 

to the given data points. However, it is important to remember that while this is true, an automotive expert applying 
expertise and experience may conclude that in fact the linear interpolation is more meaningful or that more data points 
are needed. We want to keep in mind that the “Art” component is what has to be applied to determine what degree 
polynomial and which technique will provide the best approximation. 
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Chapter One - Elimination (Substitution) 
Interpolation 

A common method for solving the resulting system of equations is using linear algebra and matrix math. However, 
neither are necessary to illustrate this technique and apply to a practical problem. We will use elimination to solve the 
example below. While I think it is important students experience how basic algebra works for interpolation, they will 
quickly see that unless the numbers are small and simple this particular technique quickly becomes unwieldy for large 
values generated during the process. 

For example: 

Sample Vehicle Fuel Efficiency Measurements 

X (Miles per Hour) 
MPH 

Y (Miles per Gallon) 
MPG 

45 43 

55 42 

65 38 

75 32 

Long Description 

Sample Vehicle Fuel Efficiency Measurement 

 

Apply expertise and experience to create a polynomial that will reasonably predict the fuel efficiency of the particular 
vehicle used to gather the above data. 

Step one: Deciding that a quadratic equation looks like the best fit, we select the first, second and fourth points to 
construct a second degree (quadratic) polynomial. 

Step Two: Even though the result will be a quadratic equation we are able to use straightforward linear techniques of 
elimination and substitution. The reason for this is that we are not trying to find x and y. The three points we selected 
already give us those. Instead, we are trying to create the quadratic in standard form  by solving for the unknown 
constants a, b and c: 

Step Three: Lets create three quadratic equations with the same three unknowns a, b, c and replacing x, y in each 
with the actual data point values. 

Eq. one:     ———–> 
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Eq. two:     ———–> 

Eq. three:   ———–> 

Step Four: The elimination process: 
45(Eq. two) – 55( Eq one): 
[  ] – [  ] 
Eq. four:     b is eliminated 
55(Eq. three) – 75(Eq. two): 
[  ]   –  [  ] 
Eq. five:      b is eliminated 
Conduct elimination on the resulting two equations with two unknowns to eliminate c. 
2(Eq. four) – Eq. five: 

  
  
______________________ 

         
Eq. six:       c is eliminated 
Plugging the resulting value of a into Eq. 4 allows us to solve for c: 

 

 
Step Five: Substitute a and c into any of the original equations to find b: 

 

Our interpolated polynomial is: 
                                                

For students looking for a less manual process here is the setup using matrix math to run the calculations in a 
spreadsheet. 
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Figure 1.1 The Matrix Math formula 

 
 

Figure 1.2 – Setup of Solution in Matrix Notation 
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Long Description 

Figure 1.2 - Setup of Solution in Matrix Notation 

 
Let’s look between 45 and 55 at   and see how well our polynomial estimates a reasonable value: 

                                           

It is recommended that the original points also be plugged into the equation as a check. 
 Plotting on our graph shows that this is indeed a very good estimate. 

 

Figure 1.3 – Line graph displaying the results of the Quadratic Interpolation 

Long Description 

Figure 1.3 - Line graph displaying the results of the Quadratic Interpolation 
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Chapter One – Practice Exercises 

1a) 

The owner of the ABC Children’s Party Company has offered a limited menu of pricing options depending on the number 
of children attending the party. The available prices are included in the table below: 

ABC Children's Party Company 

Maximum children attending the party Cost per Child Total Cost of Party 

10 $37 $370 

25 $28 $700 

50 $22 $1100 

100 $15 $1500 

Long Description 

ABC Children's Party Company 

 
The prices cover the cost plus acceptable profit and have worked well in the past. To improve the companies 

competitiveness, the owner would like to offer more flexible pricing that is specific to the actual number of children. 
She would like to develop a cubic (3rd degree) polynomial that will generate the unit price when she inputs the expected 
number of children attending the party. To develop this polynomial the student must use the algebraic technique of 
substitution (elimination) discussed in this chapter. 
(Solution Given) 
 

 
 

1b) 

This exercise offers practice in using basic matrix commands either manually or in a spreadsheet program to solve n-
equations in n-unknowns. 
(Solution given for 2nd to 5th row of data) 
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Given the following data points, develop a polynomial that will interpolate any value of p(x) on the given interval, for 
the bracketed points. It will result in a third-degree polynomial: 

Exercise 1b Sample Data Point 

x y or f(x) 

-4 12 

[-1.75] [-2] 

[1] [-3.7] 

[3.3] [-1.4] 

[6.9] [4] 

7 3.9 

9.1 6 

Long Description 

Exercise 1b Sample Data Point 

 
 

Tables  are provided to assist students 

Figure 1.4 Guide for students 
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Long Description 

Tables  to Assist Atudents 

1c) 

Select any three data points from the above table and develop a 2nd degree (quadratic) Polynomial. 
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Chapter Two - Newton's Divided Difference 
Interpolation 

A quick word regarding Divided Difference. The title might suggest that derivatives are involved, and in a way that would 
be correct. The good news is that knowledge of derivatives is not necessary for this technique. However, students should 
be familiar with the concept of slope, slope-intercept form and how slope is calculated since the process utilizes the 
change in the dependent variable (commonly known as y or f(x)) divided by the change in the independent variable 
(commonly known as x). 

Students may have already encountered Divided Difference technique in high school algebra when asked to analyze 
a set of data to determine the non-linear (usually quadratic) equation that produced the dependent variable, as the 
following example illustrates. 

Example 

Given the following set of x values, determine the quadratic (2nd degree polynomial) that correctly produces the 
corresponding y values. Show in standard form: 

 

Sample Data 

x y 

-2 25.2 

-1 11.3 

0 2 

1 -2.7 

2 -2.8 

Long Description 

Sample Data 
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Solution 

This simplified use of Newton’s Divided Difference works because one of the x values is zero and there is a uniform 
distance of one between each x value. 

 

Figure 2.1 Simplified use of Newton’s Divided Difference 

Long Description 

Figure 2.1 Simplified use of Newton’s Divided Difference 

 
Since the 2nd divided differences are all the same this tells us that there is a quadratic solution 
with  
By plugging in the x,y values (0,2) we can easily solve for c as follows: 

Or simply  . Now that we know a and c we plug those in using one of the other points such as (1,-2.7) and solve 

for b as follows:  which simplifies to  

Resulting in the solution equation of   which works for all given points and approximates 

everything in between. 
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Newton’s Divided Difference Interpolation generalizes the above process. The given points no longer have to be in any 
particular order and the x values do not have to be spaced at uniform intervals; offering a welcome flexible technique. 

The Generalized Process 

Using Newton’s Divided Difference approach, let’s develop a polynomial that takes a limited number of data points (think 
points plotted on the coordinate plane) and fit them to a polynomial that is continuous across the interval. 

This method is an iterative process that allows us to begin with one point. We can then add additional data points at 
our discretion, especially if we believe they will produce a better, more representative, polynomial. 

Each time we add a point the resulting polynomial increases by a degree resulting in a polynomial of degree one less 
than the number of points included in the interpolation process. 

(x1, y1): Constant Function: 

(x1, y1), (x2, y2): Linear Function: f_1(x) = a_1x + C 
(x1, y1), (x2, y2), (x3, y3): Quadratic Function: 

. 

. 

. 

 resulting in an  degree Function: 

 
The following example illustrates the iterative process and demonstrates its validity. 
 

I) The Constant Solution 

The Constant Solution 

x f(x) 

-2 3 

Long Description 

The Constant Solution 
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 the constant solution 

 

II) The Linear Solution: By adding a second point we move to a straight-line solution 

The Linear Solution 

x f(x) 

-2 3 

-1 -4 

Long Description 

The Linear Solution 

 
This is accomplished by preserving the constant solution   while adding a linear component that works 

for all points on the straight line passing through both given points as follows. 
 This added component will not alter the solution for  while 

introducing the appropriate linear structure (degree one polynomial). 
Solving for  ensuring f(x) will satisfy both points and everything on the line passing through the two 

given points. 
 

 

 

 

Thus 

Simplifying   since this is valid slope intercept form, we have a linear solution 

Checking 1st point   it checks 

Checking 2nd point   it checks 
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III) The Quadratic Solution – 2nd degree polynomial 

The Quadratic Solution 

x f(x) 

-2 3 

-1 -4 

3 6 

Long Description 

The Quadratic Solution 

 
Adding a third point,  allows for the development of a quadratic (2nd degree) equation. We repeat the process with the 

same goal: 
preserving the constant solution at the first point and the linear solution for first two points. The newly added third 

point will be satisfied by the previous linear solution plus the added quadratic component. 

this component (in red) ensures this new solution works for previous points as well as establishing a valid quadratic 
form. 

 

Remember 

Solving for the constant: 

Plug in and simplify 

 
As a check we will plug in our three given values of x to verify it produces the corresponding given y values. 

Check One                                                                                                                   
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CheckTwo 

Check Three 

We have engaged in an iterative process. Utilizing generalized notation for the above we conducted three iterations, 
with an additional point added at each iteration. 

Single point: : 

  Constant Solution 

Second Point Added: : 

 solving for   linear 

Third Point Added: : 

solve for   quadratic 

Each new iteration builds upon and preserves the previous solutions. 
In general, the solution polynomial can continue to be increased one degree at a time solving for each new variable as 

long as additional points become available. This results in the following general form: 
 

Normally it is best to select the lowest order polynomial that is reasonable. Higher order polynomials can introduce 
unwanted error. 

The table approach below offers a convenient methodology for manually calculating the  constants. It lends itself to 
adding additional points as needed without having to start over. 

 
The following Table Methodology illustrates and simplifies the above process. 
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Figure 2.2 Table Methodology 

Long Description 

Figure 2.2 Table Methodology 

 
Starting at the right-hand column we backtrack diagonally left and up (circled in red). Backtracking left and downward 

would have produced the same simplified equation (circled in green) 
 

This produces the following results: 

Simplifying: 

 
This satisfies the three given points as well as any interpolated points between the minimum and maximum value of 

x. Because it is a continuous function, it also produces extrapolated points beyond the range. These extrapolated points 
may or may not be valid for any particular situation being analyzed. That is part of the “Art” of interpolation which relies 
on the experience and expertise of the one studying a particular phenomenon. 
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The Sin function – An interesting example 

 
One of the neat things we can use interpolation for is to create a polynomial that provides reasonable estimates of 

the sin (or cos) of an angle for any given measure. In fact, the numbers we will use are small and simple that even the 
Elimination (Substitution) approach will easily produce the desired result. 

 
The Sine function illustrated on the coordinate plane 
 

Figure 2.3 Sine Function Graph 

Long Description 

Figure 2.3 Sine Function Graph 
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Figure 2.4 Estimating sin wave – Newton’s Divided Difference Table 

Long Description 

Figure 2.4 Estimating sin wave - Newton's Divided Difference Table 

 

Simplifying the resulting equation produces: 
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Figure 2.5 An approximation of sin value 

Long Description 

Figure 2.5 Sine Function Approximation 
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Chapter Two – Practice Exercises 

2a) 

While the owner in exercise 1a) was happy with the results of using elimination/substitution, she was curious to see 
if the results would differ using Newton’s Divided Difference (NDD) interpolation. You have decided to assist her by 
generating a cubic polynomial using NDD. (Solution given) The data is: 

ABC Children's Party Company 

Maximum children attending the party Cost per Child Total Cost of Party 

10 $37 $370 

25 $28 $700 

50 $22 $1100 

100 $15 $1500 

Long Description 

ABC Children's Party Company 

 

2b) 

Using the same seven data points from the previous chapter select three data points and plug into the grid below to 
produce a quadratic solution. Simplify the resulting polynomial and put in standard form. Note solution given for the 
three bracketed points. 
(Solution given) 
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Seven Data Points 

x y or f(x) 

-6.2 -8 

[-3] [-7] 

-1.5 -2.2 

[1] [0.7] 

3.5 3 

4.25 5 

[7.9] [11] 

Long Description 

Seven Data Points 

Exercise 2b Answer Grid 

- x f(x) 1st divided difference 2nd divided difference 

- - 

- - - - - 

- - - - - 

- - - - - 

- - - - - 

- - - - - 

Long Description 

Exercise 2b answer grid 
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2c) 

Add an additional data point and develop a 3rd degree (cubic) polynomial. Compare this to the solution from 2a) and 
decide whether or not it improves the interpolation. Note student answers may vary
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Chapter Three - Quadratic Spline Interpolation 

This technique offers several advantages over other techniques. It produces a smooth curve over the interval being 
studied while at the same time offering a distinct polynomial for each subinterval (known as Splines). Secondly it 
eliminates some of the problems inherent in trying fit a single higher order polynomial which can actually produce 
misleading estimates by being too precise. 

One disadvantage that we quickly discover is that the resulting set of polynomials can be taxing to solve manually 
using techniques such as elimination/substitution, Gauss-Jordan reduction or Cramer’s rule. Fortunately, many 
applications including most spreadsheet programs allow us to solve the resulting system, easily producing the family of 
equations. 

Let’s begin with a simple case that the student can choose to solve manually to can gain an understanding of the 
process. The matrix operations are shown as well. 

Spline Example 

 

Figure 3.1 Spline Example 
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Long Description 

Figure 3.1 Spline Example 

 
Instead of one equation we could have an equation representing the interval [2,5] and a second equation [5,7]. The key 

is that the point in the middle contributes to both equations creating a connection that ensures a smooth handoff from 
the first to the second equation. The general form is: 

             

            

Since we want to solve for the six constants in a proper linear fashion, we need four more equations. To find them we 
employ the connection at . Since each equation satisfies two endpoints this allows us to double the number of 
equations as follows: 

 

  

 

 

We now have four equations. The fifth equation we can develop at the point (5,8) known as an internal knot. Note the 
two endpoints are sometimes referred to as external knots. 

If we take the derivative of the two equations at , we know they have to be equal because the slope has to be 
the same at that point. We can set them equal to each other and simplify. This results in: 

  

Rearrange 
 
 
We now have five of the six equations 
 

  

 

 

 
 This is the sixth equation; see explanation below. 

The sixth equation is based on the assumption that the line leaving the endpoint is a straight line. The quadratic 
component zeros out thus our sixth equation is simply . The other endpoint would have produced 
which would have worked equally well. We’ll use these six equations and solve with matrix operations. 
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Constants Displayed in Matrix Form 

a1 b1 c1 a2 b2 c2 y 

4 2 1 0 0 0 1 

25 5 1 0 0 0 8 

0 0 0 25 5 1 8 

0 0 0 49 7 1 3 

10 1 0 -2 -10 0 0 

1 0 0 0 0 0 0 

 
For illustrative purposes a detailed flow of the matrix operation is offered below: 
 
 

Figure 3.2 Matrix Operation Flow 

Chapter Three - Quadratic Spline Interpolation  |  29

https://psu.pb.unizin.org/app/uploads/sites/308/2022/02/Ch-Three-C.png
https://psu.pb.unizin.org/app/uploads/sites/308/2022/02/Ch-Three-C.png


Long Description 

Figure 3.2 Matrix Operation Flow 

 

Figure 3.3 Two Spline Interpolation Equations 

Long Description 

Figure 3.3 Two Spline Interpolation Equations 
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Example – Space Launch Data 

 
The following combines a general explanation of the technique along with a specific example. We will use the following 

launch data for the Saturn 5 rocket. Note this data was pulled from readily available data for several launches and in 
fact does not represent any one launch. The data tracks a hypothetical Saturn 5 from launch until third stage shutdown 
shortly before entering earth orbit. 

 

Space Launch Data 

x (time in minutes) y (velocity in 1000ft per second) 

0 1 

1 2 

2.5 9 

3 9.2 

4 10 

5 12 

6 14.5 

7 17 

8 20 

8.75 23 

9 23.5 

10 24 

11 25.5 

11.25 25.9 

11.5 25.9 

Selected Interval Points (knots) 

x y Interval 

1 2 start of first interval 

2.5 9 1st stage separation 

8.75 23 2nd stage separation 

11.25 25.9 3rd stage shutdown 
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Figure 3.4 Plot of Launch-Knots Identified 

Long Description 

Figure 3.4 Plot of Launch-Knots Identified 

 
Since we have selected  data points we create  quadratic spline equations each with three 

unknowns: 
             

            

              

We want to solve for the  unknowns. However, with only three equations we need to create six additional 
equations in order to apply one of the standard techniques for solving n equations in n unknowns. 

Notice that each equation is a solution for two of the knots as shown in figure 1. This allows us to split each spline 
equation into two equations providing a total of n= 6 equations as follows: 
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We are getting closer. We will now create two more equations using basic knowledge of the derivative and the fact that 
two pairs of equations are solutions for the two interior knots. This works because the first derivative of each equation 
in a pair will have the same slope at the common data point (knot). 

This is not a course in calculus so I will simply show the first derivatives for each pair to obtain our additional 
equations. 

 

             at      

  the seventh equation 

 

             at      

  the eighth equation 

For our ninth equation we recognize that at each endpoint the resulting line extending beyond the interval is a straight 
line. Since this eliminates the quadratic component, we can simply make our ninth equation be: 

a_1 = 0 
 
We now have our nine equations with nine unknowns. Figure 4 below includes the nine equations. 
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Figure 3.5 The Nine Equations 

Long Description 

Figure 3.5 The Nine Equations 

 
Gathering the equations and squaring the quadratic variables results in following nine equations with nine unknowns. 

The x variables are replaced with the x-value from the related knot. 
a_1(1) + b_1(1) + c_1 = 2 

a_1(6.25) + b_1(2.5) + c_1 = 9 

a_2(76.56) + b_2(8.75) + c_2 = 23 
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It would be a cumbersome task to solve the above system by hand. Instead, we will put the data in matrix form and 
solve. 

Nine Equations Solved with Matrix Math 

1 1 1 0 0 0 0 0 0 a1 2 

6.25 2.5 1 0 0 0 0 0 0 b1 9 

0 0 0 6.25 2.5 1 0 0 0 c1 9 

0 0 0 76.56 8.75 1 0 0 0 a2 23 

0 0 0 0 0 0 76.56 8.75 1 b2 23 

0 0 0 0 0 0 126.56 11.25 1 c1 25.9 

5 1 0 -5 -1 0 0 0 0 a3 0 

0 0 0 17.5 1 0 -17.5 -1 0 b3 0 

1 0 0 0 0 0 0 0 0 c3 0 

 
Plug the above into a spreadsheet and apply matrix operations as follows: 
 

Figure 3.6 Nine Equations Solved with Matrix Math 
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Long Description 

Figure 3.6 Nine Equations Solved with Matrix Math 

 
The calculations produced three polynomials for the interval 
 

         

                 

          

These equations produce reasonable estimates for the overall flight pattern as shown in figure 3.7. 
 

Figure 3.7 A solution for a space launch 

36  |  Chapter Three - Quadratic Spline Interpolation

https://psu.pb.unizin.org/app/uploads/sites/308/2022/02/Ch-Three-J-e1650642403770.png
https://psu.pb.unizin.org/app/uploads/sites/308/2022/02/Ch-Three-J-e1650642403770.png


Long Description 

Figure 3.7 Saturn 5 Rocket Possible Solution 

 

Direct Method Cubic Interpolation 

Cubic interpolation takes us to the next level and is a common method for developing an equation that approximates 
f(x) for a particular value of x as well the neighborhood on either side made up of the four closest given data points. It 
is well suited if we want to interpolate for a particular interval of x. This will not provide a family of polynomials that 
satisfy the domain of the function. Rather it provides that single cubic polynomial that gives us a good picture of what is 
happening at and near a particular point of interest. This approach allows us to setup and solve a single cubic equation. 
The principal limitation is that it is not valid for the entire domain of x only the four closest points. Since we often only 
want to look at a limited range the benefits of a significant reduction in algebraic manipulation outweighs the limitation. 

We will use our table of data from the previous example. 

Saturn 5 Rocket Launch Data 

x (time in minutes) y (velocity in 1000 ft per second 

0 1 

1 2 

2.5 9 

3 9.2 

4 10 

5 12 

6 14.5 

7 17 

8 20 

8.75 23 

9 23.5 

10 24 

11 25.5 

11.25 25.9 

11.5 25.9 
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Let’s say we want to estimate the velocity when  minutes. We check the points on either side to determine 

the four closest values to 5.85 (shown in red). 

Closest Values to x=5.85 

Checking Distances Four Data Points 

5.85 - 3 = 2.85 - 

5.85 - 4 = 1.85 (4,10) 

5.85 - 5 = 0.85 (5,12) 

6 - 5.85 = 0.15 (6,14.5) 

7 - 5.85 = 1.15 (7,17) 

8 - 5.85 = 2.15 - 

 

Other Data Points From Example 

x (time in minutes) y (velocity in 1000 ft per second) 

4 10 

5 12 

6 14.5 

7 17 

 
Utilizing the standard form for a cubic polynomial  allows us to quickly set up four equations with four unknowns. 

Remember we are not finding x and y we already know those. Rather our unknowns are the constants a,b,c,d. 
 

   

Using high school algebra (elimination/substitution), Gauss Jordan reduction or some other method, solve for the four 
unknowns. Below shows the setup using Matrix math to solve the cubic polynomial in a spreadsheet program. 
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Figure 3.8 Solved Cubic Polynomial via Spreadsheet Program 

Long Description 

Figure 3.8 Solved Cubic Polynomial via Spreadsheet Program 

 
Resulting Equation 

    for the interval 

Let’s see how well our cubic polynomial fits when plotted against all the given points plus x = 5.85 
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Figure 3.9 Graph of Cubic Interpolation 

Long Description 

Figure 3.9 Direct Method Cubic Interpolation 

 
Notice that the solution provides the best estimate in the neighborhood of the closest points. 
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Chapter Three - Practice Exercises 

3a) 

Using the data from the  Saturn launch example in chapter three calculate the family of quadratic splines for the 
following different Selected Interval Data Points (knots) and compare to the example. 

Saturn 5 Rocket Launch Data 

x (time in minutes) y (velocity in 1000 ft per second 

0 1 

1 2 

2.5 9 

3 9.2 

4 10 

5 12 

6 14.5 

7 17 

8 20 

8.75 23 

9 23.5 

10 24 

11 25.5 

11.25 25.9 

11.5 25.9 

 

Selected Interval Points (knots) 

x y Interval 

1 2 start of first interval 

2.5 9 1st stage separation 

8.75 23 2nd stage separation 

11.25 25.9 3rd stage shutdown 
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3b) 

Using the table in 3a) for time = 7.5, conduct a Direct Method Cubic Interpolation. Show the resulting polynomial in 
standard form and graph the solution manually or with your favorite graphing tool. 
(Solution given) 
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Chapter Four - Least Squares Regression 

This technique is often used when many points of data are involved and the analyst would like the resulting polynomial 
to be influenced by all the identified points. The degree of the Interpolated polynomial should be selected ahead of time 
based on the expertise of the analyst. As a general rule of thumb, the lowest degree polynomial that appears to fit is the 
better choice. So, one might fit a quadratic or cubic solution to a large number of points which could run to dozens or 
even hundreds of points. The result will always be considered mathematically a best fit to the data. 

To gain an understanding of the underlying principle and process we will begin with a simple data set consisting of 
five points. 

Scenario 

A helium balloon that gathers meteorological data is released. For each mile it rises, the distance it travels downrange is 
also recorded. The data is recorded in the following table. 

Altitude and Downrange 

Altitude - x miles Downrange - y miles 

1 2 

2 3 

3 5 

4 5 

5 4 

 

Chapter Four - Least Squares Regression  |  43



Figure 4.1 Data points for a Helium Balloon 

Long Description 

Figure 4.1 Helium Balloon Data Points 

 
Let’s begin with the simplest model – the straight line.  We want to find a best fit linear equation that minimizes the 

sum of the distances between the actual and interpolated values of y for a given value of x. 
1) A generalized linear equation  will serve as our starting point. 
2) It is easy to see that with a little rearranging we have an equation that lends itself to finding that minimum distance 

mentioned above: y -  (ax + b) = 0 
We will square this equation so that resulting differences in distance are always positive as we are not interested in 

the direction of the difference but the sum of the differences. 
Since we want the sum of these squared equations, we have the following for this example: 

Interestingly by squaring these equations we will obtain a quadratic equation which will be useful in finding a linear 
solution. In fact, it will allow us to create two partial derivative equations for each of the constants we are trying to solve 
for. In this case a, b. This will result in two linear equations in two unknowns which we can solve using elimination/
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substitution or more advanced techniques such as matrix computations. And because they are upward facing quadratics, 
we minimize each equation be setting them to zero. 

 

1) 

 

2) 

Next, we simplify each equation by distributing the summation notation. And, since they are equal to zero, we simply 
divide out the -2. We now have two equations in two unknowns a,b. 

 

Simplify 1) 

 

Simplify 2) 

 
 
We now have two equations in two unknowns a, b. Let’s calculate the various sums and plug in. 
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I) Plug in to set up the two equations as follows: 

One: 

Two: 

II) Rearrange: 

One: 55a + 15b = 63 

Two: 15a + 5b = 19 

III) Apply substitution/elimination to solve for a, b 

We now have a polynomial that can interpolate values in the 
interval [1,5] 

  or  

 

Figure 4.2 Graph of Linear Solution 
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Long Description 

Figure 4.2 Graph of Linear Solution 

 
As we can see, the linear solution offers an estimate that is closer to some of the given points than others. Can we do 

better by generating a curved line? (2nd degree polynomial) 

The Quadratic Solution 

The challenge is to expand on the above technique and apply it to develop the best fit quadratic equation. 
In the linear, our goal was to solve two equations in two unknowns. Now we want to solve three equations in three 

unknowns. The unknowns are the constants of our quadratic equation in standard form: 
Rearranging the standard form, we develop the Least Squares Summation equation: 
 

 
Now we take partial derivatives with respect to each of the three constants a, b, c as follows: 
 

a —> 

b —>  

c —>  

Simplify by dividing out the -2 and distributing the summation notation 
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Let’s calculate the additional sums needed. We already calculated some of the sums for the linear 
equation. These are: 

Additional sums: 

    

  

 

 
 
Plugging in shows the three equations in three unknowns: 
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Rearranging 

Solving manually or using spreadsheet software the following equation is obtained: 

This is the interpolation polynomial that generates a curved line (parabola) that is the best fit for the five given data 
points and it estimates y values for any other point within interval. 

Matrix Operations simplify the calculations 
Note: multiplying the transpose by the matrix produces the summation in n-equations with n-unknowns. This holds 

true no matter how many data points are involved. 
 

Figure 4.3 Matrix Operations Simplifying Calculations 

Long Description 

Figure 4.3 Matrix Operations Simplifying Calculations 
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Figure 4.4 Graph of Quadratic Solution 

Long Description 

Figure 4.4 Graph of Quadratic Solution 

 
Visually, the quadratic is a better fit than the linear solution. 
In the next section we’ll show how to measure the goodness of the fit quantitatively. 
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Chapter Four – Practice Exercise 

4a) 

Use weekly closing data for the Dow Jones Industrial Average and run a Least Squares Regression to produce a 3rd 
degree (cubic) interpolation polynomial. Plot the data on a chart for a visual representation. Solution given uses data 
from January 2020 through July 2021, during height of the COVID-19 pandemic. 
(Solution given) 
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Chapter Five - Measuring the Least Squares Fit/
Exponential Least Squares Regression 

How Well Does the Linear Polynomial Fit the Data? 

It is natural and useful to ask: How good a predictor is the resulting polynomial for the given values of x. In other words, 
how close do the predicted values of y come to the actual values of y for a particular value of x. 

Let’s look at the chart for the linear regression we calculated (red dotted line) in Chapter Four. The length of red 
vertical lines between the actual and predicted values tells us how good the fit is. The smaller the red lines (closer), the 
better the fit. 

 

Figure 5.1 The Linear Fit 

Long Description 

Figure 5.1 The Linear Fit 

 
However, simply measuring each distance and adding them together presents some problems. We want to eliminate 
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direction because the negatives and positives tend to cancel each other out. An easy way to do this is measure each 
distance and then square the result. Hence the name Least Squared Regression. 

Next, we need a baseline or something to compare our summed squared regression. It turns out a horizontal line 
passing through the mean of the y values offers us a worst-case scenario. In other words, the distance between the 
given y and the horizontal line is essentially no fit. So we add the given y values and divide by 5 (number of data points in 

this example).  Shown in green above. The closer the predicted 

value is from the actual value and the farther it is from the mean value, the better our prediction. 
Using the data above we will conduct a  (Squared Regression) analysis to gauge numerically how well the linear 

and quadratic polynomials fit the data. 

Squared Regression Analysis 

x y 
Generated y values 

Difference between actual and generated squared: 

1 2 2.6 0.36 

2 3 3.2 0.04 

3 5 3.8 1.44 

4 5 4.4 0.36 

5 4 5 1 

- - - 

 
However, to put this in perspective we need to add a column and calculate the sum of the squared distance between 

the actual values of y and the mean value of y. 

Squared Regression Analysis with Total Differences 

x y 
Generated y values Difference between actual and generated 

squared: 

Total Squared difference between actual and 

mean. 

1 2 2.6 0.36 3.24 

2 3 3.2 0.04 0.64 

3 5 3.8 1.44 1.44 

4 5 4.4 0.36 1.44 

5 4 5 1 0.04 

- - - 

 
By taking the ratio of the sum of our squared error to the sum of the No-Fit values and subtracting from one we get a 

number (percent) that tells us how good our fit is in terms that is understandable. 
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The  value of 53% suggests that this may not be the best fit. 

Let’s calculate  for the quadratic fit to see if it is a better fit. 

Squared Regression Analysis with Different Generated y Values 

x y 
Generated y values Difference between actual and 

generated squared: 
Total Squared difference between 
actual and mean. 

1 2 1.7428 0.06615184 3.24 

2 3 3.6284 0.39488656 0.64 

3 5 4.6568 0.11778624 1.44 

4 5 4.828 0.029584 1.44 

5 4 4.142 0.020164 0.04 

- - - 

 

The quadratic is a better fit than the straight line. However, part of the “Art” of interpolation means the analyst still 
has to decide which is more meaningful and representative of the situation being analyzed. 

Exponential Least Squares Regression 

 
An important interpolation is one involving exponential polynomials. It has many applications in finance, biochemistry, 

and radioactive decay. 
We will focus on the standard form using the constant e. This is known as the natural number or Euler’s number 

value. Its importance lies in the fact that it represents the fundamental rate of growth shared by continually growing 
processes.  One example is continuous compounding of money in a savings account. 

The form of the polynomial is  

In this, we can think of r as the rate and A we can think of as both the y intercept and demonstrating whether it is 
growth (positive value) or decay (negative value). 

Graphically it looks like (A and r are both set to 1): 
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Figure 5.2 Exponential Growth 

Long Description 

Figure 5.2 Exponential Growth. 

 
 does not lend itself to directly calculating an interpolative polynomial.  This is due in part because 

standard deviation does not apply to this type of continuous and ever accelerating growth. 
Since we already know how to deal with standard polynomials that can be solved used linear techniques such as matrix 

arithmetic, our goal is to eliminate e. Solve for r and A then plug the results back into the original polynomial. 
Since we are dealing with the natural number e, we can convert the above to a linear function by taking the natural 

log of both sides as follows: 

When we rearrange, we have a linear equation in slope intercept form: 

Let’s use the following sample set of data points and use Matrix math to develop the interpolated data: 
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Interpolated Data 

x actual y Iny 

-1 0.4 -0.916 

0 1.1 0.095 

1 2.62 0.963 

2 8.1 2.092 

3 24.03 3.179 

4 57.9 4.059 

 
 

Figure 5.3 Matrix Math Solution 

Long Description 

Figure 5.3 Matrix Math Solution 
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Figure 5.4 Graph of a line of fit for exponential function 

Long Description 

Figure 5.4 The Exponential Fit 

 
This resulted in a very good fit. 
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Chapter Five - Practice Exercise 

5a) 

Measure the accuracy of the Fit from Exercise 4a, i.e. find . 

(Solution given) 
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Chapter Six - Approximation with Taylor Series 

While this text is not about calculus, I believe it is important for students to become familiar with approximation using 
Taylor Series. References to derivatives are necessary but the actual derivatives in the examples will be given. 

A way to think about Taylor Series polynomials is that they are simply a polynomial of any degree you wish to use that 
approximates a function being studied. Similar to Newton’s divided difference we start with the simplest approximation, 
the constant. 

Let’s call our approximation . We will let  be a particular point on the x-axis that will be the center of 

our approximation. The approximation improves the closer the value of x is to a. The function we are approximating is 
f(x). 

For a straight line at a particular point, we can say an approximation polynomial is . 

Suppose we choose a point , the graph might look something like: 
 

Figure 6.1 The Horizontal Straight Line Estimator 

Long Description 

Figure 6.1 The Horizontal Straight Line Estimator 
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At   , the horizontal line is an excellent approximation. 
We can say that   which is a constant. 

Clearly, once we move away from a in either direction it turns out the constant does not serve us very well. 
Our next step is adding a linear component while still retaining the constant. Which means we now have a polynomial 

that allows us to adjust the slope of the line. Let’s try   where   is the first 

derivative of the function. 

By adding the linear component, we can think of   as the slope. This improves our approximation: 

 

Figure 6.2 The Linear Solution 

Long Description 

Figure 6.2 The Linear Solution 

 
By adding the linear component, we can see how the picture improves at the point  because we now have a 

line tangent (representing the slope at ). Definitely an improvement over the constant as our approximation is 
pretty good as long as we stay near a. 

So far, we have brought to bear a constant value and the slope. Because Taylor series allows us to add higher degree 
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terms to our polynomial, we can now bring to bear the effect of concavity to the approximation. Think of concavity as 
adding curviness to what so far has been a straight line. 

Let’s add a quadratic (second degree) and cubic (third degree) component to our polynomial. These will introduce 
the curviness by adjusting the line at any given x value up or down. Figure 3 also illustrates the effect of higher order 
polynomials. 

 

Figure 6.3 Effect of Higher Order Polynomials 

Long Description 

Figure 6.3 Effect of Higher Order Polynomials 

 
We can see that as each higher-level component is added the approximation improves the farther we travel from the 

point x = a. 

Quadratic:  

Cubic:  

We could continue this indefinitely: 
  . . .  

From here we will develop the general form of the Taylor series employing basic algebra. 
This is done iteratively by solving one constant at a time. We set  since in fact all Taylor polynomials either 

start with  or include the adjustment,  so that in effect the center will always equal zero. 
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We will solve for a fourth-degree polynomial. This will be enough to demonstrate the general pattern of the Taylor 

series. To solve for each constant, we replace each of the  with   as follows: 

 

since 

next we take first derivative of both sides 
 

Again  so we are left with  

The second derivative of both sides 

since  we’re left with 

The third derivative of both sides 

since  we’re left with  

The fourth derivative 

Plugging in the solution for the four constants produces the general form: 

Normally we don’t show the denominators when they are simply one. However, I’ve done so to illustrate the emerging 
pattern. Remember  and . This allows us to observe that the denominators are really successive 
factorials. 

 

. . . 
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Sin Function 

Let’s use an actual example to illustrate the process. Some things to remember. Taylor Series approximation only works 
for certain functions; typically, those that are continuous, repeatedly differential and irrational. They are also known as 
transcendental functions. Trig functions such as sin and cos, as well as exponential and logarithmic functions, imperfect 
roots, along with several other categories work well. Suppose we have been assigned a project to create our own App 
that will generate sin values. 

We will focus on the mechanics of the process. For students who would like to delve deeper into Taylor Series there 
are a wealth of texts and videos available. 

Step One: Select the function to be approximated. For this example, we will choose the sin function. It is well suited 
for Taylor Series approximation. It is continuous over the real numbers and it is repeatedly differential. 

Step Two: Select an  value that we want to center our approximation around. It turns out 0 degree is an easy 
value to work with as we differentiate sin. 

Step Three: Repeatedly differentiate sin until the desired final degree of our Taylor Polynomial is reached. In this 
example we arbitrarily decided a ninth degree Taylor polynomial will produce Sin values accurate enough to meet our 
needs. Note we will work with radians as the angle measure. 

Derivatives 

Step Four: Plug in our derivatives into the general form of the Taylor polynomial: 

Since every other term has zero in the numerator we can drop these and condense p(0). Further since a = 0, we can 
simplify the binomials. 

The resulting Taylor Series polynomial is: 
\large p(0) = \frac {1}{1!}(x)  + \frac {-1}{3!}(x)^3 +  \frac {1}{5!}(x)^5 +  \frac {-1}{7!}(x)^7 +  \frac {1}{9!}(x)^9 

We have a relatively simple polynomial we can program into our app to produce values of sin for angles between 0 and 
90 degrees . Since sin is periodic, we can program in computations that give us the reference angle for angles greater 
than 90 or less than 0 degrees . 

Step Five: We are now ready to test p(a) for various angles between 0 and 90 degrees. Since it is easier to work 
with Radians, I’ve included a conversion for students not familiar with them. f(x) is generated from an app precise to 15 
decimal positions. p(x) is our Taylor approximation. 
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Step 5 of Taylor Approximation 

Degrees Radians f(x) p(x) 

0 0 0.000000000000000 0.000000000000000 

18 0.309016994374947 0.309016994375021 

22.5 0.382683432365090 0.382683432365947 

30 0.500000000000000 0.500000000000000 

45 0.707106781186547 0.707106782936867 

72 0.951056516295154 0.951056822327524 

90 1.000000000000000 1.000003542584290 

 
p(x) provides an excellent approximation out to at least six decimal places for the values of x we tested. The symmetry 

and reflectivity properties of the sin function will allow us to generate values less than 00 and greater than 900. 
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Figure 6.4 Graph of Taylor Approximation 

Long Description 

Figure 6.4 Taylor Approximation of Sin Function 

 
Note: Difference slight enough that lines appear to overlap on the graph. 
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Chapter Six – Practice Exercise 

6a) 

Replicate the above example (sin) for the cos. Compare the resulting graph to the one for sin. 
(Solution given) 
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Chapter Seven - Taylor Series Remainder Test 

A formal way to test the accuracy of a Taylor polynomial approximation is to employ the Taylor Remainder test. By 
adding a remainder term to our Taylor polynomial approximation, we in effect convert it into an equation, 

Our function .  Written more compactly we have  

f_n(x) = p_n(x) +  r_n(x)  . This remainder term becomes the difference between  at a particular point and 

at that same value of x. 
In the above example we ran our polynomial out to the ninth-degree term. 

 actually looks like the next higher degree term: 

 where c is between a and x 

The question we ask is what value for c should we use. The answer in this case is to solve the remainder twice for the 

endpoints of the range we are interested in. In this case we want to know how accurate c will be between  and . 

 

This will provide a range of possible values between  and 

For  

For    we drop the 

negative as it’s a matter of distance, not direction. 
This bounds the possible error of our approximation:  
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Chapter Seven - Practice Exercise 

7a) 

Conduct the Taylor Remainder Test on your solution for Practice Problem 6a. 
(Solution given) 
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Solutions to Selected Practice Exercises 

Solution to Exercise One Practice Problems 

Exercise 1a) 

ABC Children's Party Company 

Maximum children attending the party Cost per Child Total Cost of Party 

10 $37 $370 

25 $28 $700 

50 $22 $1100 

100 $15 $1500 

The four equations in four unknowns: 

 

Equations in Table Form 

a b c d cost 

1000 100 10 1 37 

15625 625 25 1 28 

125000 2500 50 1 22 

1000000 10000 100 1 15 
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Figure 8.1 Matrix Setup for Exercise 1a 

Long Description 

Figure 8.1 Matrix Setup for Exercise 1a 

 

Resulting Pricing Polynomial 

 

70  |  Solutions to Selected Practice Exercises

https://psu.pb.unizin.org/app/uploads/sites/308/2022/02/PIC-C-1-e1645814291475.png
https://psu.pb.unizin.org/app/uploads/sites/308/2022/02/PIC-C-1-e1645814291475.png


Figure 8.2 Exercise 1b 

Long Description 

Figure 8.2 Exercise 1b) 
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Solution to Exercise Two Practice Problems 

 

2a) 

Newton’s Divided Difference Table is populated as follows: 

Newton’s Divided Difference Table 

x y Linear Quadratic 
Cubic 

10 37 37 – – – 

– – – – – 

25 28 28 – – 

– – – – 

50 22 22 – – 

– – – – – 

100 15 15 – – – 

 
Simplifies to: 
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2b) 

2b Table 

x y or f(x) 

-6.2 -8 

-3 -7 

-1.5 -2.2 

1 0.7 

3.5 3 

4.25 5 

7.9 8 

 

2b Difference Table 

x f(x) 1st Divided Difference 2nd Divided Difference 

- 

-3 -7 - - 

- - - 

1 0.7 - 

- - - 

7.9 11 - - 

 
Simplifies to: -0.040x2 + 1.845x – 1.105 
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Solution to Chapter Three Practice Exercises 

Exercise 3b) 

 

Figure 8.3 Exercise 3b 

Long Description 

Figure 8.3 Exercise 3b 
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Solution to Chapter Four Practice Exercise 

4a) 

The Setup: 
Abbreviated List of weekly Dow Jones closing averages: 

Weekly Closing Averages 

Week Actual Interpolation 

1 28,583.68 1.00 1.00 1.00 1 28,416.89149 

2 28,939.67 8.00 4.00 2.00 1 28,034.20169 

3 29,196.04 27.00 9.00 3.00 1 27,677.60694 

4 28,722.85 64.00 16.00 4.00 1 27,346.5493 

- - - - - - - 

- - - - - - - 

- - - - - - - 

78 34,292.29 474,552.00 6,084.00 78.00 1 34,491.0287 

79 34,577.37 493,039.00 6,241.00 79.00 1 34,485.14307 

80 34,888.79 512,000.00 6,400.00 80.00 1 34,462.39157 

81 34,511.99 531,441.00 6,561.00 81.00 1 34,422.21628 

82 35,058.52 551,368.00 6.724.00 82.00 1 34,364.05925 

83 35,084.53 571,787.00 6,889.00 83.00 1 34,287.36256 
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Figure 8.4 Matrix Solution 4a 

Long Description 

Figure 8.4 Matrix Solution 4a 
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Figure 8.5 Graph of Weekly DJIA 

Long Description 

Figure 8.5 Weekly DJIA Close January 2020 through July 2021 

 

Solution to Chapter Five Practice Exercises 

Step One: 
1a) Find the difference between each actual value and its associated value generated by the interpolative polynomial. 

Square the result. 
1b) Find the difference between each actual value and the Mean of the actual values. Square the result. 
Step Two: 
2a) Sum the results from 1a 
2b) Sum the results from 1b 
Step Three: 

Solutions to Selected Practice Exercises  |  77

https://psu.pb.unizin.org/app/uploads/sites/308/2022/02/Prac-H.png
https://psu.pb.unizin.org/app/uploads/sites/308/2022/02/Prac-H.png


Figure 8.6 Speech Bubble 

Divide 2a by 2b subtracting the result from 1. 
Answer:  

Solution to Chapter Six Practice Exercises 

6a) 

Select the Function to be approximated. Cos function centered at x=0 
Derivatives of cos 

Plug derivatives into the general form of the Taylor polynomial: 
 

Every other term has zero in the numerator so we can drop these and condense p(0). Further since a = 0 we can 
simplify the binomials. 

 

f(x) is generated from an app precise to 15 decimal positions. p(x) is the Taylor approximation for Cosine. 
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Taylor Approximation for Cosine 

Degrees Radians f(x) p(x) 

0 0 1.000000000000000 1.000000000000000 

18 0.951056516295154 0.951056516297732 

22.5 0.923879532511287 0.923879532535293 

30 0.866025403784439 0.866025404210352 

45 0.707106781186548 0.707106805683294 

72 0.309016994374947 0.309019668329804 

90 0.000000000000000  0.000000000000000 

Solution to Chapter Seven Practice Exercise 

7a) 

 

 where c is between a and x 

Solving the remainder twice for 0 and 

This will provide a range of possible values between 0 and 
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for      

for        

Drop negative as it is a matter of distance not direction. 
Gives us an error possibility    
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