Section 4.9 Surface Area

4.9 Surface Area

This section is another application for the integrations. We can use double integration to find the surface area of a function [latex]z=f(x,y)[/latex]

above a particular region [latex]D[/latex] in [latex]xy[/latex]-plane. 

Theorem: 

The area of the surface with equation [latex]z=f(x,y)[/latex], [latex](x,y)\in D[/latex], where [latex]f_{x}[/latex] and [latex]f_{y}[/latex] are continuous is 

\[A(S)=\lim_{k,l\rightarrow\infty}\sum_{i=1}^{k}\sum_{j=1}^{l}\triangle T_{ij}=\int\int_{D}\sqrt{f_{x}^{2}+f_{y}^{2}+1}dA\]

 

 

Example 1: Find the surface area of [latex]x+2y+z=4[/latex] that lies above the region [latex]D=\{(x,y)|-1\leq x\leq0,0\leq y\leq1\}[/latex]. 

 

 

 

 

Exercise 1: Find the surface area of [latex]x+2y-z=1[/latex] that lies above the region [latex]D=\{(x,y)|0\leq x\leq1,0\leq y\leq2\}[/latex]. 

 

 

 

Example 2: Find the surface area of [latex]x-y+2z=4[/latex] that lies inside [latex]x^{2}+y^{2}=9[/latex].

 

 

 

 

Exercise 2: Find the surface area of [latex]3x+y+z=4[/latex] that lies inside [latex]x^{2}+y^{2}=4[/latex].

 

 

 

Example 3: Find the surface area of [latex]-x^{2}-y+2z=4[/latex] that lies above the triangle with vertices [latex](0,0)[/latex], [latex](1,0)[/latex] and [latex](1,2)[/latex].

 

 

 

 

Exercise 3: Find the surface area of [latex]x-y^{2}+z=2[/latex] that lies above the triangle with vertices [latex](0,0)[/latex], [latex](0,1)[/latex] and [latex](1,1)[/latex].

 

 

 

Example 4: Find the surface area of [latex]z=xy[/latex] that lies within the cylinder [latex]x^{2}+y^{2}=4.[/latex]

 

 

 

 

Exercise 4: Find the surface area of [latex]z=x^{2}+y^{2}[/latex] that lies within the cylinder [latex]x^{2}+y^{2}=1.[/latex]

 

 

 

Example 5: Find the surface area of [latex]z=y^{2}-x^{2}[/latex] that lies between [latex]x^{2}+y^{2}=1[/latex] and [latex]x^{2}+y^{2}=4[/latex].

 

 

 

 

Exercise 5: Find the surface area of [latex]z=x^{2}+y^{2}[/latex] that lies between [latex]x^{2}+y^{2}=4[/latex] and [latex]x^{2}+y^{2}=9[/latex].

 

 

 

Example 6: Find the surface area of sphere [latex]x^{2}+y^{2}+z^{2}=4[/latex] that lies within [latex]x^{2}+y^{2}=2x[/latex].

 

 

 

Group work:

1. Find the surface area of sphere [latex]x^{2}+y^{2}+z^{2}=4[/latex] that lies within cylinder [latex]x^{2}+y^{2}=2y[/latex].

 

2. Find the surface area of sphere [latex]x^{2}+y^{2}+z^{2}=4[/latex] that lies above the plane [latex]z=1[/latex].

 

3. Find the surface area of sphere [latex]x^{2}+y^{2}+z^{2}=6z[/latex] that lies inside paraboloid [latex]z=x^{2}+y^{2}[/latex].

License

Multivariable Calculus Copyright © by Kuei-Nuan Lin. All Rights Reserved.

Share This Book