"

Section 1.4 Cross Product

1.4 Cross Product

In this section, we introduce the cross product operation of vectors. The idea of dot product is to decide if a pair of vectors are orthogonal to each others. The motivation of cross product is finding a vector that is orthogonal to two given vectors. Cross product helps us to find a non-standard basis of a 3-dimension space from a given set of two vectors. It also gives us the equation of a plane in a 3-dimensional space. Before we define the cross product, we introduce the determinant.

Definition: 

Given two vectors in 2-dimensional space, u=<x1,y1> and v=<x2,y2> . A 2×2 determinant is defined by

|x1y1x2y2|=x1y2x2y1.

 

EQ1: Find the 2×2 determinant defined by u=<1,2> and v=<2,2>.

Definition: 

Given three vectors in 3-dimensional space, u=<x1,y1,z1>v=<x2,y2,z2> and w=<x3,y3,z3>.  A 3×3 determinant is defined by

|x1y1z1x2y2z2x3y3z3|=x1(y2z3y3z2)y1(x2z3x3z2)+z1(x2y3x3y2).

 

 

 

Example 1: Let u=<1,2,3>,v=<2,1,0>, and w=<2,0,1>. Find the 3×3 determinant is defined by those three vectors using the given order.

 

 

 

Exercise 1: Let u=<1,2,3>,v=<2,0,1>, and w=<3,2,1>. Find the 3×3 determinant is defined by those three vectors using the given order.

 

 

 

We are now ready for the cross product.

Definition: 

Given u=<x1,y1,z1> and v=<x2,y2,z2>. Then, the cross product, u×v, is vector 

u×v

=<y1z2y2z1,(x1z2x2z1),x1y2x2y1>

=(y1z2y2z1)i(x1z2x2z1)j+(x1y2x2y1)k

=|y1z1y2z2|i|x1z1x2z2|j+|x1y1x2y2|k

=|ijkx1y1z1x2y2z2|.

Proof of this vector is orthogonal to both u and v.

 

 

 

Notice: Cross product is only defined in 3-dimensional space. Dot product is defined in any dimensional space.

 

 

EQ2: Which one is false for given vectors u, v and w vectors in 3-dimensional space?

A: (u×v) is a vector;

B: (uv) is a number;

C: (u×v)w is a number;

D: (u×v)×w is a number.

 

 

 

Example 2: Let u=<1,2,3>,v=<2,1,0>, and w=<2,0,1> be vectors. 

(a) Find (u×v)

(b) Find (u×w)

(c) Find (u×v)w

(d) Find (u×v)×w

 

 

 

Exercise 2: Let u=<1,2,3>,v=<2,0,1>, and w=<3,2,1> be vectors. 

(a) Find (u×v)

(b) (u×w)

(c) (u×v)w

(d) (u×v)×w

 

 

 

Theorem: Properties of cross product 

Let u,v, and w be vectors. Let r be scalars. 

i. u×v=v×u Anti-commutative property 

ii. u×(v+w)=u×v+u×w Distributive property 

iii. c(u×v)=(cu)×v=u×(cv) Associative property

iv. u×0=0×u=0 Cross product of the zero vector

v. v×v=0 Cross product of a vector with itself

vi. u(v×w)=(u×v)w Scalar triple product.

Proof of vi using matrix:

 

 

 

 

EQ3: Which one is false for given vectors

u, v and w vectors in 3-dimensional space?

A: u×v=v×u;

B: u(v×w)=(u×v)w;

C: v×v=0;

D: (u+v)×w=(u×w)+(v×w). 

 

 

 

Theorem:

Let u and v be vectors, and let θ be the angle between them. Then 

||u×v||=||u||||v||sin(θ).

Proof: Use ||u×v||2

 

 

 

Example 3: Find sin(θ) where θ is the angle between each pair of vectors. 

a. i+j and jk 

b. <1,2,3> and <3,0,1>

 

 

 

Exercise 3: Find sin(θ) where θ is the angle between each pair of vectors. 

a. ij+2k and i+2jk 

b. <1,2,3> and <0,3,2>

 

 

 

Theorem: Parallel Vectors

The nonzero vectors u and v are parallel vectors if and only if u×v=0.

 

 

 

Theorem: Area of parallelogram

Given nonzero vectors u and v,

||u×v||=||u||||v||sin(θ)  is the area of the parallelogram determined by u and v.

 

 

 

Example 4: Find the area of parallelogram determined by u=<1,2,3>,v=<2,1,0>.

 

 

 

Exercise 4: Find the area of parallelogram determined by u=<1,2,3>,v=<2,0,1>.

 

 

 

Theorem: Volume of parallelepiped Given nonzero vectors u, v and w then 

|u(v×w)|

is the volume of the parallelepiped determined by u, v and w.

Proof: Use picture.

 

 

 

Example 5: Find the volume of the parallelepiped determined by u=<1,2,3>,v=<2,1,0> and w=<0,3,1>.

 

 

 

Exercise 5: Find the volume of the parallelepiped determined by u=<1,2,3>,v=<2,0,1> and w=<2,2,0>.

 

 

 

Notice: If the volume of the the parallelepiped determined by u, v and w is 0 then u, v and w are coplanar which means they lie on the same plane. Hence u(v×w)=0 if and only if u, v and w are coplanar.

 

Example 6: Decide if given four points are on the same plane. A=(1,0,2), B=(2,1,0), C=(0,2,1), D=(3,0,1).

 

 

 

Exercise 6: Decide if given four points are on the same plane. A=(1,3,2), B=(3,1,6), C=(5,2,0), D=(3,6,4).

 

 

 

Definition: Torque

Torque τ (the Greek letter tau), measures the tendency of a force to produce rotation about an axis of rotation. Let r be a vector with an initial point located on the axis of rotation and with a terminal point located at the point where the force is applied, and let vector F represent the force. Then torque is equal to the cross product of r and F: τ=r×F.

 

 

 

 

Group work:

1. A bolt is tightened by applying a 40-N force to a 0.1-m wrench at a 60 degree to the wrench. Find the magnitude of the torque about the center of the bolt.

 

2. Let P=(1,1,0),Q=(0,1,1), and R=(1,0,1) be the vertices of a triangle. Find its area.

 

3. Only a single plane can pass through any set of three non-colinear points. Find a vector orthogonal to the plane containing points P=(9,3,2),

Q=(1,3,0), and R=(2,5,0).

 

4. Nonzero vectors u and v are called collinear if there exists a nonzero scalar c such that v=cu. Show that vectors AB and AC are collinear, where A(4,1,0),B(6,5,2), and C(5,3,1).

 

5. Determine a vector of magnitude 10 perpendicular to the plane passing through the x-axis and point P(1,2,4).

 

6. A bolt is tightened by applying a 30-N force to a 0.15-m wrench at a 90 degree to the wrench. Find the magnitude of the torque about the center of the bolt.

 

7. Let P=(1,0,0),Q=(0,1,0), and R=(0,0,1) be the vertices of a triangle. Find its area.

License

Multivariable Calculus Copyright © by Kuei-Nuan Lin. All Rights Reserved.