"

Section 3.2 Higher Order Differential equations

Objective:

1. Find the solution of a high order homogenous differential equations with constant coefficients.

Definition: Consider the n-th order homogeneous ODE: 

a0y(n)+a1y(n1)++an1y+any=0

 where a1,...,an are real coefficients. The characteristic equation of the ODE a0y(n)+a1y(n1)+...+any=0 is a0λn+a1λn1+...+an=0.

 

 

Fact: If r is a root of the characteristic equation of the ODE with multiplicity p then ert,tert,..,tp1ert are solutions of the ODE.

 

 

 

Example 1:  Find the general solution of the ODE. y3y4y=0

 

 

 

Exercise 1: Find the general solution of the ODE. y2y8y=0

 

 

 

Example 2: Find the general solution of the ODE. y(4)81y=0

 

 

 

Exercise 2: Find the general solution of the ODE. y(4)625y=0

 

 

 

Example 3: Find the general solution of the ODE. y+9y=0

 

 

 

Exercise 3: Find the general solution of the ODE. y+4y=0

 

 

 

Example 4: Find the general solution of the ODE. y6y+12y8y=0

 

 

 

Exercise 4: Find the general solution of the ODE. y+3y+3y+y=0

 

 

 

Group Work: 

1. y2y+2y=0 and y(0)=1, y(0)=0, y(0)=1. Find the solution. 

 

2. y+y=0 and y(0)=2, y(0)=1, y(0)=0. Find the solution. 

 

3. y(4)4y+4y=0 and y(0)=2, y(0)=1, y(0)=0, y(0)=0. Find the solution. 

License

Differential Equations Copyright © by Kuei-Nuan Lin. All Rights Reserved.