"

Section 5.3. System of linear equations

Objective:

1. Basic terms of a system of linear equations

2. Linearly independent, eigenvalues, eigenvectors

Definition: (a) A system of n linear equations in n variables,

a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn

 can be expressed as a matrix equation Ax=b:

[a11a12a1na21a22an1an2ann][x1x2xn]=[b1b2bn].

If b=0, then system is homogeneous; otherwise it is nonhomogeneous.

(b) A set of vectors v1,…,vp is linearly dependent if there exists scalars c1,c2,...,cp, not all zero, such that 

c1v1+c2v2+.+cpvp=0,

 otherwise it is linearly independent.

(c) A set of vector functions v1(t),…,vp(t) is linearly dependent if there exists scalars c1,c2,...,cp, not all zero, such that 

c1v1(t)+c2v2(t)+.+cpvp(t)=0,

 otherwise it is linearly independent.

 

 

 

Example 1: Determinate if the set of the vector functions is linearly independent or linearly dependent. 

v1=[3ete2t],  v2=[et4e2t], and v3=[2et3e2t].

 

 

 

Exercise 1: Determinate if the set of the vector functions is linearly independent or linearly dependent.  v1=[2e3te4t], v2=[e3t2e4t], and v3=[7e3te4t].

 

 

 

Fact: (a) If the coefficient matrix A is nonsingular, then it is invertible and we can solve Ax=b and the solution is x=A1b. The only solution to Ax=0is the trivial solution x=0. 

(b) The columns (or rows) of A are linearly independent iff A is nonsingular iff  A1 exists.

(c) A is nonsingular iff detA0. 

 

 

 

Example 2:  Show v1=[3ete2t],  v2=[et4e2t] are linearly independent. 

 

 

 

Exercise 2: Showv1=[2e3te4t], v2=[e3t2e4t] are linearly independent. 

 

 

 

Definition:  Let λ be a value such that Ax=λx for some x0, then (AλI)x=0 has a nontrivial solution, x0. We must have det(AλI)=0. We call λ an eigenvalue of A} and x is called the eigenvector of A} corresponding to the eigenvalue λ. If an eigenvalue λ is repeated m times, i.e. it is a repeated root of det(AλI)=0 for m times, then its algebraic multiplicity is m.

 

 

 

Example 3:  Find the eigenvalues and their eigenvectors of A=[3003] and B=[3403].

 

 

 

Exercise 3: Find the eigenvalues and their eigenvectors of A=[4004] and B=[4304]. 

 

 

 

Example 4: Find the eigenvalues and their eigenvectors of A=[5131]. 

 

 

 

Exercise 4:  Find the eigenvalues and their eigenvectors of A=[4121]. 

 

 

 

Group Work: 

1. Find the eigenvalues and their eigenvectors of A=[3153]. 

 

2. Find the eigenvalues and their eigenvectors of A=[5335]. 

 

3. Find the eigenvalues and their eigenvectors of A=[2114]. 

 

4. Find the eigenvalues and their eigenvectors of A=[2772]. 

License

Differential Equations Copyright © by Kuei-Nuan Lin. All Rights Reserved.