"

Section 6.4 Fourier Series introduction

Objective:

1. Definition of a Fourier series

2. Euler-Fourier formulas

3. Find the Fourier series of a linear piece-wise function

In previous section, we have for any integer n, λn=(nπL)2 is an eigenvalue and Xn=cnsin(nπLx) is an eigenfunction for the boundary value problem X+λX=0X(0)=0=X(L). This means general solution is a linear combinations of Xn=cnsin(nπLx). We have the form n=cnsin(nπLx). We are interested in what exactly solution we should have and if the series is convergent. We introduce the Fourier series.

Definition: (a) We begin with a series of the form  a02+n=1(ancos(nπxL)+bnsin(nπxL)). On the set of points where this series converges, it defines a function f(x) whose value at each point x is the sum of the series for that value of x. The series is said to be the Fourier series of f(x).  

(b) The coefficients an=1LLLf(x)cos(nπxL)dxn=0,1,2,..., and bn=1LLLf(x)sin(nπxL)dxn=1,2,3,.... which are known as the Euler-Fourier formulas.

(c) A function is periodic} with period T>0 if the domain of f(x) contains x+T whenever it contains x, and if f(x+T)=f(x). In particular, sin(nπx/L) and cos(nπx/L) are periodic with period T=2L/n. Furthermore, f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL)) has period 2L. 

 

 

 

Example 1: Sketch the graph for 3 periods. Find the Fourier series. f(x)=x, L<x<L, f(x+2L)=f(x).

 

 

 

Exercise 1: Sketch the graph for 3 periods. Find the Fourier series. f(x)=x, L<x<L, f(x+2L)=f(x).

 

 

 

Example 2: Sketch the graph for 3 periods. Find the Fourier series.  f(x)={0Lx<010x<L,  L<x<L, f(x+2L)=f(x).

 

 

 

 

Exercise 2: Sketch the graph for 3 periods. Find the Fourier series.  f(x)={1Lx<000x<L, L<x<L, f(x+2L)=f(x).

 

 

 

Example 3: Sketch the graph for 3 periods. Find the Fourier series.  f(x)={0πx<0x0x<π,  π<x<π, f(x+2π)=f(x).

 

 

 

Exercise 3: Sketch the graph for 3 periods. Find the Fourier series.  f(x)={xπx<000x<π, π<x<π, f(x+2π)=f(x).

 

 

 

Group work:

1. Sketch the graph for 3 periods. Find the Fourier series.  f(x)={22x<0x+20x<2,  2<x<2, f(x+4)=f(x).

 

2. Sketch the graph for 3 periods. Find the Fourier series.  f(x)={x+22x<02x0x<2,  2<x<2, f(x+4)=f(x).

 

3. Sketch the graph for 3 periods. Find the Fourier series.  f(x)={LLx<0L+x0x<L, L<x<L, f(x+2L)=f(x).

 

License

Differential Equations Copyright © by Kuei-Nuan Lin. All Rights Reserved.