"

Section 6.5 Fourier Series

Objective:

1. The Fourier Convergence Theorem

In previous section, if a Fourier series a02+n=1(ancos(nπxL)+bnsin(nπxL)).  converges and thereby defines a function f(x) then f(x) is periodic with period 2L, with the coefficients an=1LLLf(x)cos(nπxL)dxn=0,1,2,..., and bn=1LLLf(x)sin(nπxL)dxn=1,2,3,.... What we do is that we begin with a periodic function f(x) of period 2L that is integrable on [L,L]. We compute an and bn using the formulas above and construct the associated Fourier series. The question is whether this series converges for each x, and if so, whether its sum is f(x).

Theorem:  Suppose that f(x) and f(x) are piecewise continuous on [L,L). Further, suppose that f(x) is defined outside[L,L) so that it is periodic with period 2L. Then f(x) has a Fourier series f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL)) where an=1LLLf(x)cos(nπxL)dxn=0,1,2,..., and bn=1LLLf(x)sin(nπxL)dx,n=1,2,3,.... The Fourier series converges to f(x) at all points x where f(x) is continuous, and to [f(x+)+f(x)]/2 at all points x where f is discontinuous.

 

 

Example 1: Sketch the graph for 3 periods. Find the Fourier series. Graph where the series convergent.  f(x)={1Lx<010x<L,  L<x<L, f(x+2L)=f(x).

 

 

 

Exercise 1: Sketch the graph for 3 periods. Find the Fourier series. Graph where the series convergent.  f(x)={1Lx<010x<L, L<x<L, f(x+2L)=f(x).

 

 

 

Example 2: Sketch the graph for 3 periods. Find the Fourier series. Graph where the series convergent.  f(x)={xLx<000x<L,  L<x<L, f(x+2L)=f(x).

 

 

 

Exercise 2: Sketch the graph for 3 periods. Find the Fourier series. Graph where the series convergent.  f(x)={0Lx<0x0x<L, L<x<L, f(x+2L)=f(x).

 

 

 

Example 3: Sketch the graph for 3 periods. Find the Fourier series. Graph where the series convergent.  f(x)={x+22x<02x0x<2, 2<x<2, f(x+4)=f(x).

 

 

 

Exercise 3: Sketch the graph for 3 periods. Find the Fourier series. Graph where the series convergent.  f(x)={2x1x<0x+10x<1, 1<x<1, f(x+2)=f(x).

 

 

 

Group work:

1. Sketch the graph for 3 periods. Find the Fourier series. Graph where the series convergent.  f(x)={02x<0x20x<2,  2<x<2, f(x+4)=f(x).

 

2. Sketch the graph for 3 periods. Find the Fourier series. Graph where the series convergent.  f(x)=1x2,  1<x<1, f(x+2)=f(x).

License

Differential Equations Copyright © by Kuei-Nuan Lin. All Rights Reserved.