Section 2.6 Linear Transformations

2.6A

 

Definition: A transformation (or mapping) [latex]T[/latex] is linear if

(1) [latex]T(\vec{u}+\vec{v}) = T(\vec{u}) + T(\vec{v})[/latex] for all [latex]\vec{u},\vec{v}[/latex] in the domain of [latex]T[/latex].

 

(2) [latex]T(c\vec{u}) = cT(\vec{u})[/latex] for all scalars [latex]c[/latex] and all [latex]\vec{u}[/latex] in the domain of [latex]T[/latex].

 

Fact: 1. Linear transformations preserve the operations of vector addition and scalar multiplication.

2. If [latex]T[/latex] is a linear transformation, then [latex]T(\vec{0}) = \vec{0}[/latex] and [latex]T(c\vec{u}+d\vec{v}) = cT(\vec{u})+dT(\vec{v})[/latex].

 

3. If a transformation satisfies [latex]T(c\vec{u}+d\vec{v}) = cT(\vec{u})+dT(\vec{v})[/latex] for all [latex]\vec{u},\vec{v}[/latex] in the domain of [latex]T[/latex] then it must be linear.

 

 

Theorem: If [latex]T[/latex] is a linear transformation then [latex]T(c_{1}{v}_1 + \cdots + c_{p}\vec{v}_p) = c_{1}T(\vec{v}_1) + \cdots + c_{p}T(\vec{v}_p)[/latex] for [latex]\vec{v}_{1}, \cdots, \vec{v}_{p}[/latex] in the domain of [latex]T[/latex]. We call this equality superposition principle.

 

Example 1: Let [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] be a linear transformation that maps [latex]\vec{u} = \begin{bmatrix}1\\2\end{bmatrix}[/latex] into [latex]\begin{bmatrix}3\\4\end{bmatrix}[/latex] and maps [latex]\vec{v} = \begin{bmatrix}-1\\3\end{bmatrix}[/latex] into [latex]\begin{bmatrix}2\\-1\end{bmatrix}[/latex]. Use the fact that [latex]T[/latex] is linear to find the images under [latex]T[/latex] of [latex]2\vec{u},-3\vec{v}[/latex] and [latex]2\vec{u}-3\vec{v}[/latex].

 

 

Exercise 1: Let [latex]T: \mathbb{R}^3 \rightarrow \mathbb{R}^3[/latex] be a linear transformation that maps [latex]\vec{u} = \begin{bmatrix}1\\2\\-1\end{bmatrix}[/latex] into [latex]\begin{bmatrix}3\\5\\4\end{bmatrix}[/latex] and maps [latex]\vec{v} = \begin{bmatrix}-1\\4\\3\end{bmatrix}[/latex] into [latex]\begin{bmatrix}1\\-1\\-2\end{bmatrix}[/latex]. Use the fact that [latex]T[/latex] is linear to find the images under [latex]T[/latex] of [latex]-(1/2)\vec{u},2\vec{v}[/latex] and [latex]-(1/2)\vec{u}+2\vec{v}[/latex].

 

Fact: A matrix transformations is a linear transformation.

Definition: The standard basis of [latex]\mathbb{R}^n[/latex] is the columns set of [latex]I_n, {\vec{e_1}, \cdots, \vec{e_n}}[/latex].

 

Fact: Every vector [latex]\vec{x} = \begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}[/latex] is a linear combination of the [latex]\vec{e_i}[/latex]‘s and [latex]\vec{x} = x_{1}\vec{e_1} + x_{2}\vec{e_2} + \cdots + x_{n}\vec{e_n}[/latex].

 

Example 2: Let [latex]\vec{e_1} = \begin{bmatrix}1\\0\end{bmatrix}, \vec{e_2} = \begin{bmatrix}0\\1\end{bmatrix}, \vec{y_1} = \begin{bmatrix}2\\-1\end{bmatrix}[/latex] and [latex]\vec{y_2} = \begin{bmatrix}1\\-1\end{bmatrix}[/latex], and let [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] a linear transformation map [latex]\vec{e_1}[/latex] to [latex]\vec{y_1}[/latex] and [latex]\vec{e_2}[/latex] to [latex]\vec{y_2}[/latex]. Find the image of [latex]\vec{u} = \begin{bmatrix}-3\\4\end{bmatrix}[/latex] and [latex]\vec{x} = \begin{bmatrix}x_1\\x_2\end{bmatrix}[/latex] under [latex]T[/latex].

 

 

Exercise 2: Let [latex]\vec{e_1} = \begin{bmatrix}1\\0\end{bmatrix}, \vec{e_2} = \begin{bmatrix}0\\1\end{bmatrix}, \vec{y_1} = \begin{bmatrix}-2\\3\end{bmatrix}[/latex] and [latex]\vec{y_2} = \begin{bmatrix}4\\-1\end{bmatrix}[/latex], and let [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] a linear transformation map [latex]\vec{e_1}[/latex] to [latex]\vec{y_1}[/latex] and [latex]\vec{e_2}[/latex] to [latex]\vec{y_2}[/latex]. Find the image of [latex]\vec{u} = \begin{bmatrix}6\\-5\end{bmatrix}[/latex] and [latex]\vec{x} = \begin{bmatrix}x_1\\x_2\end{bmatrix}[/latex] under [latex]T[/latex].

 

Theorem: Let [latex]T: \mathbb{R}^n \rightarrow \mathbb{R}^m[/latex] be a linear transformation. Then there exists a unique [latex]m \times n[/latex] matrix such that [latex]T(\vec{x}) = A\vec{x}[/latex] for all vectors [latex]\vec{x}[/latex] in [latex]\mathbb{R}^n[/latex].

In fact, [latex]A = \begin{bmatrix}T(\vec{e_1}\cdots\vec{e_n})\end{bmatrix}[/latex] where [latex]\vec{e_i}[/latex] is the i-th column of the [latex]n \times n[/latex] identity matrix. [latex]A[/latex] is called the standard matrix of [latex]T[/latex].

 

Proof: For any vector [latex]\vec{x} = \begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix}[/latex], we can write [latex]\vec{x} = x_{1}\vec{e_{1}} + \cdots + x_{n}\vec{e_{n}}[/latex] then by the fact that [latex]T[/latex] is a linear transformation, we have [latex]T(\vec{x}) = x_{1}T(\vec{e_1}) + \cdots + x_{n}T(\vec{e_n}) = A\vec{x}[/latex]. The uniqueness is proved in the groupwork.

 

Theorem: Let [latex]T: \mathbb{R}^n \rightarrow \mathbb{R}^m[/latex] be a transformation. [latex]T[/latex] is linear if and only if it is a matrix transformation.

 

 

Theorem: Let [latex]\mathbb{R}^k\overset{T}{\rightarrow}\mathbb{R}^n\overset{S}{\rightarrow}\mathbb{R}^m[/latex] be linear transformations, and let [latex]A[/latex] and [latex]B[/latex] be the standard matrices of [latex]S[/latex] and [latex]T[/latex] respectively. Then [latex]S \circ T[/latex] is linear with standard matrix [latex]AB[/latex].

 

Example 3: Let [latex]\mathbb{R}^k\overset{T}{\rightarrow}\mathbb{R}^n\overset{S}{\rightarrow}\mathbb{R}^m[/latex] be linear transformation, and let [latex]A=\begin{bmatrix}1 & 2\\0 & -1\\3 & 0\end{bmatrix}[/latex] and [latex]B=\begin{bmatrix}0 & -1 & 2 & 0\\1 & 2 & 0 & 1\end{bmatrix}[/latex] be the standard matrices of [latex]S[/latex] and [latex]T[/latex] respectively. Find the standard matrix of [latex]S \circ T[/latex].

 

 

Exercise 3: Let [latex]\mathbb{R}^k\overset{T}{\rightarrow}\mathbb{R}^n\overset{S}{\rightarrow}\mathbb{R}^m[/latex] be linear transformation, and let [latex]A=\begin{bmatrix}1 & 2 & 0\\0 & -1 & 1\end{bmatrix}[/latex] and [latex]B=\begin{bmatrix}0 & -1\\1 & 0\\1 & 2\end{bmatrix}[/latex] be the standard matrices of [latex]S[/latex] and [latex]T[/latex] respectively. Find the standard matrix of [latex]S \circ T[/latex].

 

Example 4: Let [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] be a linear transformation map [latex]\begin{bmatrix}2\\1\end{bmatrix}[/latex] to [latex]\vec{y_{1}} = \begin{bmatrix}1\\-1\end{bmatrix}[/latex] and [latex]\begin{bmatrix}-1\\0\end{bmatrix}[/latex] to [latex]\vec{y_{2}} = \begin{bmatrix}2\\1\end{bmatrix}[/latex]. Find the image of [latex]\vec{u} = \begin{bmatrix}-3\\2\end{bmatrix}[/latex] under [latex]T[/latex].

 

Exercise 4: Let [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] be a linear transformation map [latex]\begin{bmatrix}1\\3\end{bmatrix}[/latex] to [latex]\vec{y_{1}} = \begin{bmatrix}2\\-1\end{bmatrix}[/latex] and [latex]\begin{bmatrix}-0\\2\end{bmatrix}[/latex] to [latex]\vec{y_{2}} = \begin{bmatrix}0\\1\end{bmatrix}[/latex]. Find the image of [latex]\vec{u} = \begin{bmatrix}-3\\2\end{bmatrix}[/latex] under [latex]T[/latex].

 

Group Work 1: Mark each statement True or False. Justify each answer.

a. A linear transformation is a special type of function.

 

b. If [latex]A[/latex] is a [latex]3 \times 5[/latex] matrix and [latex]T[/latex] is a transformation defined by [latex]T(\vec{x}) = A\vec{x}[/latex] then the domain of [latex]T[/latex] is [latex]\mathbb{R}^5[/latex].

 

c. If [latex]A[/latex] is an [latex]m \times n[/latex] matrix, then the range of the transformation [latex]\vec{x} \rightarrow A\vec{x}[/latex] is [latex]\mathbb{R}^m[/latex].

 

d. Every linear transformation is a matrix transformation.

 

e. A transformation [latex]T[/latex] is linear if and only if [latex]T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v})[/latex] for all scalars [latex]c, d[/latex] and [latex]\vec{u}, \vec{v}[/latex] in the domain of [latex]T[/latex].

 

Group Work 2: Show the transformation [latex]T[/latex] defined by [latex]T(x_{1}, x_{2}) = (x_{1}-3x_{2}, x_{1}-2, 3x_{1}-5x_{2})[/latex] is not linear.

 

Group Work 3: Show the transformation [latex]T[/latex] defined by [latex]T(x_{1}, x_{2}) = (x_{1}-3|x_{2}|, x_{1}-4x_{2})[/latex] is not linear.

 

Group Work 4: Show the transformation [latex]T[/latex] defined by [latex]T(x_{1}, x_{2}, x_{3}) = (x_{1}, 0, x_{3})[/latex] is linear.

 

Group Work 5: Mark each statement True or False. Justify each answer.

a. The range of the transformation [latex]\vec{x} \rightarrow A\vec{x}[/latex] is the set of all linear combinations of the columns of [latex]A[/latex].

 

b. Every matrix transformation is a linear transformation.

 

c. A linear transformation preserves the operations of vector addition and
scalar multiplication.

 

d. A linear transformation, [latex]T: \mathbb{R}^n \rightarrow \mathbb{R}^m[/latex] always map the origin of [latex]\mathbb{R}^n[/latex] to the origin of [latex]\mathbb{R}^m[/latex].

 

e. Let [latex]T[/latex] and [latex]S[/latex] be linear transformations then [latex]T \circ S = S \circ T[/latex].

 

2.6B

 

Example 1: Let [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] be the transformation that rotates each point in [latex]\mathbb{R}^2[/latex] about the origin through an angle [latex]\varphi[/latex], with counterclockwise rotation for a positive angle. This transformation is a linear transformation. Find the matrix [latex]A[/latex] such that [latex]T(\vec{x}) = A\vec{x}[/latex].

 

Exercise 1: Let [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] be the transformation that rotates each point in [latex]\mathbb{R}^2[/latex] about the origin through an angle [latex]\varphi[/latex], with clockwise rotation for a positive angle. This transformation is a linear transformation. Find the matrix [latex]A[/latex] such that [latex]T(\vec{x}) = A\vec{x}[/latex].

 

Example 2: Find the standard matrix of a linear transformation [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] that first reflects points through the horizontal [latex]x_{1}[/latex]-axis and then rotates points [latex]-\frac{\pi}{2}[/latex].

 

Exercise 2: Find the standard matrix of a linear transformation [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] that first reflects points through the horizontal [latex]x_{1}[/latex]-axis and then reflects points through the line [latex]x_{1}=x_{2}[/latex].

 

Definition: 1. A map [latex]T: \mathbb{R}^n \rightarrow \mathbb{R}^m[/latex] is called onto if for all [latex]\vec{b}[/latex] in [latex]\mathbb{R}^m[/latex] there is at least one
[latex]\vec{x}[/latex] in [latex]\mathbb{R}^n[/latex] such that [latex]T(\vec{x}) = \vec{b}[/latex].

2. A map [latex]T: \mathbb{R}^n \rightarrow \mathbb{R}^m[/latex] is called one to one if [latex]T(\vec{x}) = T(\vec{y})[/latex] then [latex]\vec{x} = \vec{y}[/latex] for all [latex]\vec{x}, \vec{y}[/latex] in [latex]\mathbb{R}^n[/latex].

 

Example 3: Is the map defined by the matrix [latex]A = \begin{bmatrix}2 & -2 & 3 & 1\\0 & 3 & 2 & 2\\0 & 0 & 0 & 4\end{bmatrix}[/latex] one to one linear transformation?

 

Exercise 3: Is the map defined by the matrix [latex]A = \begin{bmatrix}2 & -2 & -5 & 1\\0 & 3 & 4 & 1\\0 & 0 & 1 & 2\\0 & 0 & 0 & 0\end{bmatrix}[/latex] one to one linear transformation?

 

Theorem: Let [latex]\mathbb{R}^n\rightarrow\mathbb{R}^m[/latex] be a linear transformations. [latex]T[/latex] is one to one if and only if [latex]T(\vec{x}) = \vec{0}[/latex] only has the trivial solution.

 

Theorem: Let [latex]\mathbb{R}^n\rightarrow\mathbb{R}^m[/latex] with standard matrix [latex]A[/latex]. Then

(1) [latex]T[/latex] is onto if and only if [latex]A[/latex] has pivot positions in every row.

 

(2) [latex]T[/latex] is one to one if and only if [latex]A[/latex] has pivot position in every column.

 

Example 4: Let [latex]T(x_{1}, x_{2}) = (x_{1} - x_{2}, 2x_{1} + 3x_{2}, 3x_{1} - 2x_{2})[/latex]. Show that [latex]T[/latex] is a one to one linear transformation. Is [latex]T[/latex] a onto transformation?

 

Example 4: Let [latex]T(x_{1}, x_{2}) = (-x_{1} + x_{2}, 2x_{1} - x_{2}, -3x_{1} + 2x_{2})[/latex]. Show that [latex]T[/latex] is a one to one linear transformation. Is [latex]T[/latex] a onto transformation?

 

GroupWork 1: Mark each statement True or False. Justify each answer.

a. A linear transformation is completely determined by its effect on the
columns of the [latex]n \times n[/latex] matrix.

 

b. If [latex]T: \mathbb{R}^2 \rightarrow \mathbb{R}^2[/latex] rotates vectors about the origin through an angle [latex]\varphi[/latex], then [latex]T[/latex] is a linear transformation.

 

c. When two linear transformations are performed one after another, the
combined effect may not always be a linear transformation.

 

d. A map [latex]T: \mathbb{R}^n \rightarrow \mathbb{R}^m[/latex] is onto if every [latex]\vec{x}[/latex] in [latex]\mathbb{R}^n[/latex] maps onto some vector in [latex]\mathbb{R}^m[/latex].

 

e. If the standard matrix of a linear transformation is a [latex]3 \times 2[/latex] matrix then [latex]T[/latex] cannot be one to one.

 

Group Work 2: Let [latex]T: \mathbb{R}^n \rightarrow \mathbb{R}^m[/latex] and [latex]S: \mathbb{R}^m \rightarrow \mathbb{R}^n[/latex] be two linear transformations. Show the transformation from [latex]\mathbb{R}^n[/latex] to [latex]\mathbb{R}^p[/latex] defined by sending [latex]\vec{x}[/latex] in [latex]\mathbb{R}^n[/latex] to [latex]S(T(\vec{x}))[/latex] in [latex]\mathbb{R}^p[/latex] is a linear transformation.

 

Group Work 3: Mark each statement True or False. Justify each answer.

a. If the standard matrix of a linear transformation is [latex]4 \times 3[/latex] then the map is onto.

 

b. Every linear transformation from [latex]\mathbb{R}^n[/latex] to [latex]\mathbb{R}^m[/latex] is a matrix transformation.

 

c. The columns of the standard matrix of a linear transformation [latex]T[/latex] from [latex]\mathbb{R}^n[/latex] to [latex]\mathbb{R}^m[/latex] is the images of the the columns of the [latex]n \times n[/latex] identity matrix under
[latex]T[/latex].

 

d. A linear transformation, [latex]T: \mathbb{R}^n \rightarrow \mathbb{R}^m[/latex] is one to one if each vector in [latex]\mathbb{R}^n[/latex] maps to a unique vector in [latex]\mathbb{R}^m[/latex].

 

Group Work 4: A primitive society has three basic needs: food, shelter, and clothing. There are thus three industries in the society—the farming, housing, and garment industries—that produce these commodities. Each of these industries consumes a certain proportion of the total output of each commodity according to the following table.

Find the annual prices that each industry must charge for its income to equal its expenditures.

License

Icon for the Creative Commons Attribution 4.0 International License

Matrices Copyright © by Kuei-Nuan Lin is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book