4.1 Applications of 1st Derivative
Given a particular function, we are often interested in determining the largest (maximum) and smallest (minimum) values of the function. This information is important in creating accurate graphs. Finding the maximum and minimum values of a function also has practical significance because we can use this method to solve optimization problems, such as maximizing profit, minimizing the amount of material used in manufacturing an aluminum can, or finding the maximum height a rocket can reach. In this section, we look at how to use derivatives to find the largest and smallest values for a function.
Absolute Extrema
Consider the function

Definition
Let
Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to absolute value. An absolute extremum may be positive, negative, or zero. Second, if a function
for all real numbers
A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. (Figure 4.2) shows several functions and some of the different possibilities regarding absolute extrema. However, the following theorem, called the Extreme Value Theorem, guarantees that a continuous function

Long Description: In figure a, the line f(x) = x3 is shown, and it is noted that it has no absolute minimum and no absolute maximum. In figure b, the line f(x) = 1/(x2 + 1) is shown, which is near 0 for most of its length and rises to a bump at (0, 1); it has no absolute minimum, but does have an absolute maximum of 1 at x = 0. In figure c, the line f(x) = cos x is shown, which has absolute minimums of −1 at ±π, ±3π, … and absolute maximums of 1 at 0, ±2π, ±4π, …. In figure d, the piecewise function f(x) = 2 – x2 for 0 ≤ x < 2 and x – 3 for 2 ≤ x ≤ 4 is shown, with absolute maximum of 2 at x = 0 and no absolute minimum. In figure e, the function f(x) = (x – 2)2 is shown on [1, 4], which has absolute maximum of 4 at x = 4 and absolute minimum of 0 at x = 2. In figure f, the function f(x) = x/(2 − x) is shown on [0, 2), with absolute minimum of 0 at x = 0 and no absolute maximum.
Extreme Value Theorem
If
The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis. There are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be continuous over a closed, bounded interval. If the interval
Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in determining where absolute extrema occur.
Local Extrema and Critical Points
Consider the function

Long description: The function f(x) is shown, which curves upward from quadrant III, slows down in quadrant II, achieves a local maximum on the y-axis, decreases to achieve a local minimum in quadrant I at x = 1, increases to a local maximum at x = 2 that is greater than the other local maximum, and then decreases rapidly through quadrant IV.
Definition
A function
Note that if
Given the graph of a function
To answer this question, let’s look at (Figure 4.3) again. The local extrema occur at
Definition
Let
As mentioned earlier, if
Fermat’s Theorem
If
Proof
Suppose
Since this limit exists, both one-sided limits also exist and equal
and
Since
From Fermat’s theorem, we conclude that if
Note this theorem does not claim that a function

Long description: In figure a, a parabola is shown facing down in quadrant I; there is a horizontal tangent line at the local maximum marked f’(c) = 0. In figure b, there is a function drawn with an asymptote at c, meaning that the function increases toward infinity on both sides of c; it is noted that f’(c) is undefined. In figure c, a version of the absolute value graph is shown that has been shifted so that its minimum is in quadrant I with x = c. It is noted that f’(c) is undefined. In figure d, a version of the function f(x) = x3 is shown that has been shifted so that its inflection point is in quadrant I with x = c. Its inflection point at (c, f(c)) has a horizontal line through it, and it is noted that f’(c) = 0. In figure e, a version of the function f(x) = x1/3 is shown that has been shifted so that its inflection point is in quadrant I with x = c. Its inflection point at (c, f(c)) has a vertical line through it, and it is noted that f’(c) is undefined.
Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a critical point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine whether a critical point is associated with a local extremum.
Locating Absolute Extrema
The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. As shown in (Figure 4.5), one or both of these absolute extrema could occur at an endpoint. If an absolute extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local extremum. Therefore, by (Figure 4.5), the point
Location of Absolute Extrema
Let
With this idea in mind, let’s examine a procedure for locating absolute extrema.
Problem-Solving Strategy: Locating Absolute Extrema over a Closed Interval
Consider a continuous function
- Evaluate
at the endpoints and - Find all critical points of
that lie over the interval and evaluate at those critical points. - Compare all values found in (1) and (2). From (Figure 4.5), the absolute extrema must occur at endpoints or critical points. Therefore, the largest of these values is the absolute maximum of
The smallest of these values is the absolute minimum of
Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.
At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local extrema and determined that if a function
Mean Value Theorem
The Mean Value Theorem is one of the most important theorems in calculus. We look at some of its implications at the end of this section. First, let’s start with a special case of the Mean Value Theorem, called Rolle’s theorem.
Rolle’s Theorem
Informally, Rolle’s theorem states that if the outputs of a differentiable function

Long description: Figure a shows the first quadrant with values a, c, and b marked on the x-axis. A downward-facing parabola is drawn such that its values at a and b are the same. The point c is the global maximum, and it is noted that f’(c) = 0. Figure b shows the first quadrant with values a, c, and b marked on the x-axis. An upward-facing parabola is drawn such that its values at a and b are the same. The point c is the global minimum, and it is noted that f’(c) = 0. Figure c shows the first quadrant with points a, c1, c2, and b marked on the x-axis. One period of a sine wave is drawn such that its values at a and b are equal. The point c1 is the global maximum, and it is noted that f’(c1) = 0. The point c2 is the global minimum, and it is noted that f’(c2) = 0.
Rolle’s Theorem
Let
Proof
Let
for all- There exists
such that - There exists
such that [latex]f(x)
Case 1: If
Case 2: Since
Case 3: The case when there exists a point
An important point about Rolle’s theorem is that the differentiability of the function

Let’s now consider functions that satisfy the conditions of Rolle’s theorem and calculate explicitly the points
The Mean Value Theorem and Its Meaning
Rolle’s theorem is a special case of the Mean Value Theorem. In Rolle’s theorem, we consider differentiable functions

Long description: On the x-axis, a, c1, c2, and b are marked. On the y-axis, f(a) and f(b) are marked. The function f(x) starts at (a, f(a)), decreases to c1, increases to c2, and then decreases to (b, f(b)). A secant line is drawn between (a, f(a)) and (b, f(b)), and it is noted that this line has slope (f(b) – f(a))/(b − a). The tangent lines at c1 and c2 are drawn, and these lines are parallel to the secant line. It is noted that the slopes of these tangent lines are f’(c1) and f’(c2), respectively.
Mean Value Theorem
Let
Proof
The proof follows from Rolle’s theorem by introducing an appropriate function that satisfies the criteria of Rolle’s theorem. Consider the line connecting
and the line passes through the point
Let

Long description: On the x-axis, a and b are marked. On the y-axis, f(a) and f(b) are marked. The function f(x) starts at (a, f(a)), decreases, then increases, and then decreases to (b, f(b)). A secant line is drawn between (a, f(a)) and (b, f(b)), and it is noted that this line has equation y = ((f(b) – f(a))/(b − a)) (x − a) + f(x). A line is drawn between the maximum of f(x) and the secant line and it is marked g(x).
Since the graph of
we see that
Since
In the next example, we show how the Mean Value Theorem can be applied to the function
One application that helps illustrate the Mean Value Theorem involves velocity. For example, suppose we drive a car for 1 h down a straight road with an average velocity of 45 mph. Let
Corollaries of the Mean Value Theorem
Let’s now look at three corollaries of the Mean Value Theorem. These results have important consequences, which we use in upcoming sections.
At this point, we know the derivative of any constant function is zero. The Mean Value Theorem allows us to conclude that the converse is also true. In particular, if
Corollary 1: Functions with a Derivative of Zero
Let
Proof
Since
Since
Therefore, there exists
From Corollary 1, it follows that if two functions have the same derivative, they differ by, at most, a constant.
Corollary 2: Constant Difference Theorem
If
Proof
Let
The third corollary of the Mean Value Theorem discusses when a function is increasing and when it is decreasing. Recall that a function
Using the Mean Value Theorem, we can show that if the derivative of a function is positive, then the function is increasing; if the derivative is negative, then the function is decreasing ((Figure 4.9)). We make use of this fact in the next section, where we show how to use the derivative of a function to locate local maximum and minimum values of the function, and how to determine the shape of the graph.
This fact is important because it means that for a given function

Long description: A vaguely sinusoidal function f(x) is graphed. It increases from somewhere in the second quadrant to (a, f(a)). In this section it is noted that f’ > 0. Then in decreases from (a, f(a)) to (b, f(b)). In this section it is noted that f’ is less than 0. Finally, it increases to the right of (b, f(b)) and it is noted in this section that f’ is greater than 0.
Corollary 3: Increasing and Decreasing Functions
Let
- If
for all then is an increasing function over - If
for all then is a decreasing function over
Proof
We will prove i.; the proof of ii. is similar. Suppose
Since
However,