Chapter 1: Information Sciences
5 History of the Internet
From https://en.wikipedia.org/wiki/History_of_the_Internet
The history of the Internet begins with the development of electronic computers in the 1950s. Initial concepts of packet networking originated in several computer science laboratories in the United States, United Kingdom, and France. The US Department of Defense awarded contracts as early as the 1960s for packet network systems, including the development of the ARPANET (which would become the first network to use the Internet Protocol). The first message was sent over the ARPANET from computer science Professor Leonard Kleinrock’s laboratory at University of California, Los Angeles (UCLA) to the second network node at Stanford Research Institute (SRI).
Packet switching networks such as ARPANET, NPL network, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of communications protocols. Donald Davies first designed a packet-switched network at the National Physics Laboratory in the UK, which became a testbed for UK research for almost two decades. The ARPANET project led to the development of protocols for internetworking, in which multiple separate networks could be joined into a network of networks.
Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) funded the Computer Science Network (CSNET). In 1982, the Internet protocol suite (TCP/IP) was introduced as the standard networking protocol on the ARPANET. In the early 1980s the NSF funded the establishment for national supercomputing centers at several universities, and provided interconnectivity in 1986 with the NSFNET project, which also created network access to the supercomputer sites in the United States from research and education organizations. Commercial Internet service providers (ISPs) began to emerge in the very late 1980s. The ARPANET was decommissioned in 1990. Limited private connections to parts of the Internet by officially commercial entities emerged in several American cities by late 1989 and 1990, and the NSFNET was decommissioned in 1995, removing the last restrictions on the use of the Internet to carry commercial traffic.
In the 1980s, research at CERN in Switzerland by British computer scientist Tim Berners-Lee resulted in the World Wide Web, linking hypertext documents into an information system, accessible from any node on the network. Since the mid-1990s, the Internet has had a revolutionary impact on culture, commerce, and technology, including the rise of near-instant communication by electronic mail, instant messaging, voice over Internet Protocol (VoIP) telephone calls, two-way interactive video calls, and the World Wide Web with its discussion forums, blogs, social networking, and online shopping sites. The research and education community continues to develop and use advanced networks such as NSF’s very high speed Backbone Network Service (vBNS), Internet2, and National LambdaRail. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1-Gbit/s, 10-Gbit/s, or more. The Internet’s takeover of the global communication landscape was almost instant in historical terms: it only communicated 1% of the information flowing through two-way telecommunications networks in the year 1993, already 51% by 2000, and more than 97% of the telecommunicated information by 2007. Today the Internet continues to grow, driven by ever greater amounts of online information, commerce, entertainment, and social networking.
Precursors
The concept of data communication – transmitting data between two different places through an electromagnetic medium such as radio or an electric wire – predates the introduction of the first computers. Such communication systems were typically limited to point to point communication between two end devices. Telegraph systems and telex machines can be considered early precursors of this kind of communication. The Telegraph in the late 19th century was the first fully digital communication system.
Fundamental theoretical work in data transmission and information theory was developed by Claude Shannon, Harry Nyquist, and Ralph Hartley in the early 20th century.
Early computers had a central processing unit and remote terminals. As the technology evolved, new systems were devised to allow communication over longer distances (for terminals) or with higher speed (for interconnection of local devices) that were necessary for the mainframe computer model. These technologies made it possible to exchange data (such as files) between remote computers. However, the point-to-point communication model was limited, as it did not allow for direct communication between any two arbitrary systems; a physical link was necessary. The technology was also considered unsafe for strategic and military use because there were no alternative paths for the communication in case of an enemy attack.
Development of wide-area networking
With limited exceptions, the earliest computers were connected directly to terminals used by individual users, typically in the same building or site. Such networks became known as local-area networks (LANs). Networking beyond this scope, known as wide-area networks (WANs), emerged during the 1950s and became established during the 1960s.
Inspiration for the Internet
J. C. R. Licklider, Vice President at Bolt Beranek and Newman, Inc., proposed a global network in his January 1960 paper Man-Computer Symbiosis:
A network of such [computers], connected to one another by wide-band communication lines [which provided] the functions of present-day libraries together with anticipated advances in information storage and retrieval and [other] symbiotic functions
In August 1962, Licklider and Welden Clark published one of the first descriptions of a networked future in the paper “On-Line Man-Computer Communication.”
In October 1962, Licklider was hired by Jack Ruina as director of the newly established Information Processing Techniques Office (IPTO) within DARPA, with a mandate to interconnect the United States Department of Defense‘s main computers at Cheyenne Mountain, the Pentagon, and SAC HQ. There he formed an informal group within DARPA to further computer research. He began by writing memos describing a distributed network to the IPTO staff, whom he called “Members and Affiliates of the Intergalactic Computer Network”. As part of the information processing office’s role, three network terminals had been installed: one for System Development Corporation in Santa Monica, one for Project Genie at University of California, Berkeley, and one for the Compatible Time-Sharing System project at Massachusetts Institute of Technology (MIT). Licklider’s identified need for inter-networking would become obvious by the apparent waste of resources this caused.
For each of these three terminals, I had three different sets of user commands. So if I was talking online with someone at S.D.C. and I wanted to talk to someone I knew at Berkeley or M.I.T. about this, I had to get up from the S.D.C. terminal, go over and log into the other terminal and get in touch with them….
I said, oh man, it’s obvious what to do: If you have these three terminals, there ought to be one terminal that goes anywhere you want to go where you have interactive computing. That idea is the ARPAnet.
Although he left the IPTO in 1964, five years before the ARPANET went live, it was his vision of universal networking that provided the impetus for his successors such as Lawrence Roberts and Robert Taylor to further the ARPANET development. Licklider later returned to lead the IPTO in 1973 for two years.
Development of packet switching
The issue of connecting separate physical networks to form one logical network was the first of many problems. In the 1960s, Paul Baran of the RAND Corporation produced a study of survivable networks for the U.S. military in the event of nuclear war. Information transmitted across Baran’s network would be divided into what he called “message-blocks”. Independently, Donald Davies (National Physical Laboratory, UK), proposed and was the first to put into practice a similar network based on what he called packet-switching, the term that would ultimately be adopted. Leonard Kleinrock (MIT) developed a mathematical theory behind this technology (without the packets). Packet-switching provides better bandwidth utilization and response times than the traditional circuit-switching technology used for telephony, particularly on resource-limited interconnection links.
Packet switching is a rapid store and forward networking design that divides messages up into arbitrary packets, with routing decisions made per-packet. Early networks used message switched systems that required rigid routing structures prone to single point of failure. This led Tommy Krash and Paul Baran’s U.S. military-funded research to focus on using message-blocks to include network redundancy.
Networks that led to the Internet
ARPANET
Promoted to the head of the information processing office at Defense Advanced Research Projects Agency (DARPA), Robert Taylor intended to realize Licklider’s ideas of an interconnected networking system. Bringing in Larry Roberts from MIT, he initiated a project to build such a network. The first ARPANET link was established between the University of California, Los Angeles (UCLA) and the Stanford Research Institute at 22:30 hours on October 29, 1969.
“We set up a telephone connection between us and the guys at SRI …”, Kleinrock … said in an interview: “We typed the L and we asked on the phone,
“Do you see the L?”
“Yes, we see the L,” came the response.
We typed the O, and we asked, “Do you see the O.”
“Yes, we see the O.”
Then we typed the G, and the system crashed …
Yet a revolution had begun” ….
Image of ARPAnet, from blog.dreamhardware.com
By December 5, 1969, a 4-node network was connected by adding the University of Utah and the University of California, Santa Barbara. Building on ideas developed in ALOHAnet, the ARPANET grew rapidly. By 1981, the number of hosts had grown to 213, with a new host being added approximately every twenty days.
ARPANET development was centered around the Request for Comments (RFC) process, still used today for proposing and distributing Internet Protocols and Systems. RFC 1, entitled “Host Software”, was written by Steve Crocker from the University of California, Los Angeles, and published on April 7, 1969. These early years were documented in the 1972 film Computer Networks: The Heralds of Resource Sharing.
ARPANET became the technical core of what would become the Internet, and a primary tool in developing the technologies used. The early ARPANET used the Network Control Program (NCP, sometimes Network Control Protocol) rather than TCP/IP. On January 1, 1983, known as flag day, NCP on the ARPANET was replaced by the more flexible and powerful family of TCP/IP protocols, marking the start of the modern Internet.
International collaborations on ARPANET were sparse. For various political reasons, European developers were concerned with developing the X.25 networks. Notable exceptions were the Norwegian Seismic Array (NORSAR) in 1972, followed in 1973 by Sweden with satellite links to the Tanum Earth Station and Peter Kirstein‘s research group in the UK, initially at the Institute of Computer Science, London University and later at University College London.
NPL
In 1965, Donald Davies of the National Physical Laboratory (United Kingdom) proposed a national data network based on packet-switching. The proposal was not taken up nationally, but by 1970 he had designed and built the Mark I packet-switched network to meet the needs of the multidisciplinary laboratory and prove the technology under operational conditions. By 1976 12 computers and 75 terminal devices were attached and more were added until the network was replaced in 1986. NPL, followed by ARPANET, were the first two networks in the world to use packet switching.
Merit Network
The Merit Network was formed in 1966 as the Michigan Educational Research Information Triad to explore computer networking between three of Michigan’s public universities as a means to help the state’s educational and economic development. With initial support from the State of Michigan and the National Science Foundation (NSF), the packet-switched network was first demonstrated in December 1971 when an interactive host to host connection was made between the IBM mainframe computer systems at the University of Michigan in Ann Arbor and Wayne State University in Detroit.. Continual development of the Merti network set the stage for Merit’s role in the NSFNET project starting in the mid-1980s.
CYCLADES
The CYCLADES packet switching network was a French research network designed and directed by Louis Pouzin. First demonstrated in 1973, it was developed to explore alternatives to the initial ARPANET design and to support network research generally. It was the first network to make the hosts responsible for the reliable delivery of data, rather than the network itself, using unreliable datagrams and associated end-to-end protocol mechanisms.
X.25 and public data networks
Based on ARPA’s research, packet switching network standards were developed by the International Telecommunication Union (ITU) in the form of X.25 and related standards. While using packet switching, X.25 is built on the concept of virtual circuits emulating traditional telephone connections. In 1974, X.25 formed the basis for the SERCnet network between British academic and research sites, which later became JANET. The initial ITU Standard on X.25 was approved in March 1976.
The British Post Office, Western Union International and Tymnet collaborated to create the first international packet switched network, referred to as the International Packet Switched Service (IPSS), in 1978. This network grew from Europe and the US to cover Canada, Hong Kong, and Australia by 1981. By the 1990s it provided a worldwide networking infrastructure.
Unlike ARPANET, X.25 was commonly available for business use. Telenet offered its Telemail electronic mail service, which was also targeted to enterprise use rather than the general email system of the ARPANET.
UUCP and Usenet
In 1979, two students at Duke University, Tom Truscott and Jim Ellis, originated the idea of using Bourne shell scripts to transfer news and messages on a serial line UUCP connection with nearby University of North Carolina at Chapel Hill. Following public release of the software in 1980, the mesh of UUCP hosts forwarding on the Usenet news rapidly expanded. UUCPnet, as it would later be named, also created gateways and links between FidoNet and dial-up BBS hosts. UUCP networks spread quickly due to the lower costs involved, ability to use existing leased lines, X.25 links or even ARPANET connections, and the lack of strict use policies compared to later networks like CSNET and Bitnet.
Merging the networks and creating the Internet (1973–95)
TCP/IP
With so many different network methods, something was needed to unify them. Robert E. Kahn of DARPA and ARPANET recruited Vinton Cerf of Stanford University to work with him on the problem. By 1973, they had worked out a fundamental reformulation, where the differences between network protocols were hidden by using a common internetwork protocol, and instead of the network being responsible for reliability, as in the ARPANET, the hosts became responsible. Cerf credits Hubert Zimmermann, Gerard LeLann and Louis Pouzin (designer of the CYCLADES network) with important work on this design.
The specification of the resulting protocol, RFC 675 – Specification of Internet Transmission Control Program, by Vinton Cerf, Yogen Dalal and Carl Sunshine, Network Working Group, December 1974, contains the first attested use of the term internet, as a shorthand for internetworking; later RFCs repeat this use, so the word started out as an adjective rather than the noun it is today.
With the role of the network reduced to the bare minimum, it became possible to join almost any networks together, no matter what their characteristics were, thereby solving Kahn’s initial problem. DARPA agreed to fund development of prototype software, and after several years of work, the first demonstration of a gateway between the Packet Radio network in the SF Bay area and the ARPANET was conducted by the Stanford Research Institute. On November 22, 1977 a three network demonstration was conducted including the ARPANET, the SRI’s Packet Radio Van on the Packet Radio Network and the Atlantic Packet Satellite network.
Stemming from the first specifications of TCP in 1974, TCP/IP emerged in mid-late 1978 in nearly its final form, as used for the first decades of the Internet, known as “IPv4“. (IPv4 eventually became superseded by its successor, called “IPv6“, but this was largely due to the sheer number of devices being connected post-2005, which overwhelmed the numbers that IPv4 had been able to accommodate worldwide. However, due to IPv4’s entrenched position by that time, the shift is still in its early stages as of 2015, and expected to take many years, decades, or perhaps longer, to complete).
The associated standards for IPv4 were published by 1981 as RFCs 791, 792 and 793, and adopted for use. DARPA sponsored or encouraged the development of TCP/IP implementations for many operating systems and then scheduled a migration of all hosts on all of its packet networks to TCP/IP. On January 1, 1983, known as flag day, TCP/IP protocols became the only approved protocol on the ARPANET, replacing the earlier NCP protocol.
From ARPANET to NSFNET
After the ARPANET had been up and running for several years, ARPA looked for another agency to hand off the network to; ARPA’s primary mission was funding cutting edge research and development, not running a communications utility. Eventually, in July 1975, the network had been turned over to the Defense Communications Agency, also part of the Department of Defense. In 1983, the U.S. military portion of the ARPANET was broken off as a separate network, the MILNET. MILNET subsequently became the unclassified but military-only NIPRNET, in parallel with the SECRET-level SIPRNET and JWICS for TOP SECRET and above. NIPRNET does have controlled security gateways to the public Internet.
The networks based on the ARPANET were government funded and therefore restricted to noncommercial uses such as research; unrelated commercial use was strictly forbidden. This initially restricted connections to military sites and universities. During the 1980s, the connections expanded to more educational institutions, and even to a growing number of companies such as Digital Equipment Corporation and Hewlett-Packard, which were participating in research projects or providing services to those who were.
Several other branches of the U.S. government, the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Department of Energy (DOE) became heavily involved in Internet research and started development of a successor to ARPANET. In the mid-1980s, all three of these branches developed the first Wide Area Networks based on TCP/IP. NASA developed the NASA Science Network, NSF developed CSNET and DOE evolved the Energy Sciences Network or ESNet.
NASA developed the TCP/IP based NASA Science Network (NSN) in the mid-1980s, connecting space scientists to data and information stored anywhere in the world. In 1989, the DECnet-based Space Physics Analysis Network (SPAN) and the TCP/IP-based NASA Science Network (NSN) were brought together at NASA Ames Research Center creating the first multiprotocol wide area network called the NASA Science Internet, or NSI. NSI was established to provide a totally integrated communications infrastructure to the NASA scientific community for the advancement of earth, space and life sciences. As a high-speed, multiprotocol, international network, NSI provided connectivity to over 20,000 scientists across all seven continents.
In 1981 NSF supported the development of the Computer Science Network (CSNET). CSNET connected with ARPANET using TCP/IP, and ran TCP/IP over X.25, but it also supported departments without sophisticated network connections, using automated dial-up mail exchange.
In 1986, the NSF created NSFNET, a 56 kbit/s backbone to support the NSF-sponsored supercomputing centers. The NSFNET also provided support for the creation of regional research and education networks in the United States, and for the connection of university and college campus networks to the regional networks. The use of NSFNET and the regional networks was not limited to supercomputer users and the 56 kbit/s network quickly became overloaded. NSFNET was upgraded to 1.5 Mbit/s in 1988 under a cooperative agreement with the Merit Network in partnership with IBM, MCI, and the State of Michigan. The existence of NSFNET and the creation of Federal Internet Exchanges (FIXes) allowed the ARPANET to be decommissioned in 1990. NSFNET was expanded and upgraded to 45 Mbit/s in 1991, and was decommissioned in 1995 when it was replaced by backbones operated by several commercial Internet Service Providers.
Transition towards the Internet
The term “internet” was adopted in the first RFC published on the TCP protocol (RFC 675: Internet Transmission Control Program, December 1974) as an abbreviation of the term internetworking and the two terms were used interchangeably. In general, an internet was any network using TCP/IP. It was around the time when ARPANET was interlinked with NSFNET in the late 1980s, that the term was used as the name of the network, Internet, being the large and global TCP/IP network.
As interest in networking grew and new applications for it were developed, the Internet’s technologies spread throughout the rest of the world. The network-agnostic approach in TCP/IP meant that it was easy to use any existing network infrastructure, such as the IPSS X.25 network, to carry Internet traffic. In 1984, University College London replaced its transatlantic satellite links with TCP/IP over IPSS.
Many sites unable to link directly to the Internet created simple gateways for the transfer of electronic mail, the most important application of the time. Sites with only intermittent connections used UUCP or FidoNet and relied on the gateways between these networks and the Internet. Some gateway services went beyond simple mail peering, such as allowing access to File Transfer Protocol (FTP) sites via UUCP or mail.
TCP/IP goes global (1980s)
CERN, the European Internet, the link to the Pacific and beyond
Between 1984 and 1988 CERN began installation and operation of TCP/IP to interconnect its major internal computer systems, workstations, PCs and an accelerator control system. CERN continued to operate a limited self-developed system (CERNET) internally and several incompatible (typically proprietary) network protocols externally. There was considerable resistance in Europe towards more widespread use of TCP/IP, and the CERN TCP/IP intranets remained isolated from the Internet until 1989.
In 1988, Daniel Karrenberg, from Centrum Wiskunde & Informatica (CWI) in Amsterdam, visited Ben Segal, CERN‘s TCP/IP Coordinator, looking for advice about the transition of the European side of the UUCP Usenet network (much of which ran over X.25 links) over to TCP/IP. In 1987, Ben Segal had met with Len Bosack from the then still small company Cisco about purchasing some TCP/IP routers for CERN, and was able to give Karrenberg advice and forward him on to Cisco for the appropriate hardware. This expanded the European portion of the Internet across the existing UUCP networks, and in 1989 CERN opened its first external TCP/IP connections. This coincided with the creation of Réseaux IP Européens (RIPE), initially a group of IP network administrators who met regularly to carry out coordination work together. Later, in 1992, RIPE was formally registered as a cooperative in Amsterdam.
At the same time as the rise of internetworking in Europe, ad hoc networking to ARPA and in-between Australian universities formed, based on various technologies such as X.25 and UUCPNet. These were limited in their connection to the global networks, due to the cost of making individual international UUCP dial-up or X.25 connections. In 1989, Australian universities joined the push towards using IP protocols to unify their networking infrastructures. AARNet was formed in 1989 by the Australian Vice-Chancellors’ Committee and provided a dedicated IP based network for Australia.
The Internet began to penetrate Asia in the 1980s. In May 1982 South Korea became the second country to successfully set up TCP/IP IPv4 network.Japan, which had built the UUCP-based network JUNET in 1984, connected to NSFNET in 1989. It hosted the annual meeting of the Internet Society, INET’92, in Kobe. Singapore developed TECHNET in 1990, and Thailand gained a global Internet connection between Chulalongkorn University and UUNET in 1992.