"

Chapter 9: Design

34 Human-computer Interaction

Human–computer interaction (commonly referred to as HCI) researches the design and use of computer technology, focused on the interfaces between people (users) and computers. Researchers in the field of HCI both observe the ways in which humans interact with computers and design technologies that let humans interact with computers in novel ways.

As a field of research, human-computer interaction is situated at the intersection of computer science, behavioral sciences, design, media studies, and several other fields of study. The term was popularized by Stuart K. Card, Allen Newell, and Thomas P. Moran in their seminal 1983 book, The Psychology of Human-Computer Interaction, although the authors first used the term in 1980[1] and the first known use was in 1975.[2] The term connotes that, unlike other tools with only limited uses (such as a hammer, useful for driving nails but not much else), a computer has many uses and this takes place as an open-ended dialog between the user and the computer. The notion of dialog likens human-computer interaction to human-to-human interaction, an analogy which is crucial to theoretical considerations in the field.[3][4]

Introduction

Humans interact with computers in many ways; and the interface between humans and the computers they use is crucial to facilitating this interaction. Desktop applications, internet browsers, handheld computers, and computer kiosks make use of the prevalent graphical user interfaces (GUI) of today.[5] Voice user interfaces (VUI) are used for speech recognition and synthesising systems, and the emerging multi-modal and gestalt User Interfaces (GUI) allow humans to engage with embodied character agents in a way that cannot be achieved with other interface paradigms. The growth in human-computer interaction field has been in quality of interaction, and in different branching in its history. Instead of designing regular interfaces, the different research branches have had different focus on the concepts of multimodality rather than unimodality, intelligent adaptive interfaces rather than command/action based ones, and finally active rather than passive interfaces[citation needed]

The Association for Computing Machinery (ACM) defines human-computer interaction as “a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them”.[5] An important facet of HCI is the securing of user satisfaction (or simply End User Computing Satisfaction). “Because human–computer interaction studies a human and a machine in communication, it draws from supporting knowledge on both the machine and the human side. On the machine side, techniques in computer graphics, operating systems, programming languages, and development environments are relevant. On the human side, communication theory, graphic and industrial design disciplines, linguistics, social sciences, cognitive psychology, social psychology, and human factors such as computer user satisfaction are relevant. And, of course, engineering and design methods are relevant.”[5] Due to the multidisciplinary nature of HCI, people with different backgrounds contribute to its success. HCI is also sometimes termed human–machine interaction (HMI), man–machine interaction (MMI) or computer–human interaction (CHI).

Poorly designed human-machine interfaces can lead to many unexpected problems. A classic example of this is the Three Mile Island accident, a nuclear meltdown accident, where investigations concluded that the design of the human–machine interface was at least partly responsible for the disaster.[6][7][8] Similarly, accidents in aviation have resulted from manufacturers’ decisions to use non-standard flight instrument or throttle quadrant layouts: even though the new designs were proposed to be superior in basic human–machine interaction, pilots had already ingrained the “standard” layout and thus the conceptually good idea actually had undesirable results.

Leading academic research centers include CMU’s Human-Computer Interaction Institute, GVU Center at Georgia Tech, and the University of Maryland Human–Computer Interaction Lab.

Goals

Human–computer interaction studies the ways in which humans make, or don’t make, use of computational artifacts, systems and infrastructures. In doing so, much of the research in the field seeks to improve human-computer interaction by improving the usability of computer interfaces.[9] How usability is to be precisely understood, how it relates to other social and cultural values and when it is, and when it may not be a desirable property of computer interfaces is increasingly debated.[10][11]

Much of the research in the field of human-computer interaction takes an interest in:

  • Methods for designing novel computer interfaces, thereby optimizing a design for a desired property such as, e.g., learnability or efficiency of use.
  • Methods for implementing interfaces, e.g., by means of software libraries.
  • Methods for evaluating and comparing interfaces with respect to their usability and other desirable properties.
  • Methods for studying human computer use and its sociocultural implications more broadly.
  • Models and theories of human computer use as well as conceptual frameworks for the design of computer interfaces, such as, e.g., cognitivist user models, Activity Theory or ethnomethodological accounts of human computer use.[12]
  • Perspectives that critically reflect upon the values that underlie computational design, computer use and HCI research practice.[13]

Visions of what researchers in the field seek to achieve vary. When pursuing a cognitivist perspective, researchers of HCI may seek to align computer interfaces with the mental model that humans have of their activities. When pursuing a post-cognitivist perspective, researchers of HCI may seek to align computer interfaces with existing social practices or existing sociocultural values.

Researchers in HCI are interested in developing new design methodologies, experimenting with new devices, prototyping new software and hardware systems, exploring new interaction paradigms, and developing models and theories of interaction.

Design

Principles

The user interacts directly with hardware for the human input and output such as displays, e.g. through a graphical user interface. The user interacts with the computer over this software interface using the given input and output (I/O) hardware.
Software and hardware must be matched, so that the processing of the user input is fast enough, the latency of the computer output is not disruptive to the workflow.

When evaluating a current user interface, or designing a new user interface, it is important to keep in mind the following experimental design principles:

  • Early focus on user(s) and task(s): Establish how many users are needed to perform the task(s) and determine who the appropriate users should be; someone who has never used the interface, and will not use the interface in the future, is most likely not a valid user. In addition, define the task(s) the users will be performing and how often the task(s) need to be performed.
  • Empirical measurement: Test the interface early on with real users who come in contact with the interface on a daily basis. Keep in mind that results may vary with the performance level of the user and may not be an accurate depiction of the typical human-computer interaction. Establish quantitative usability specifics such as: the number of users performing the task(s), the time to complete the task(s), and the number of errors made during the task(s).
  • Iterative design: After determining the users, tasks, and empirical measurements to include, perform the following iterative design steps:
    1. Design the user interface
    2. Test
    3. Analyze results
    4. Repeat

Repeat the iterative design process until a sensible, user-friendly interface is created.[14]

Methodologies

A number of diverse methodologies outlining techniques for human–computer interaction design have emerged since the rise of the field in the 1980s. Most design methodologies stem from a model for how users, designers, and technical systems interact. Early methodologies, for example, treated users’ cognitive processes as predictable and quantifiable and encouraged design practitioners to look to cognitive science results in areas such as memory and attention when designing user interfaces. Modern models tend to focus on a constant feedback and conversation between users, designers, and engineers and push for technical systems to be wrapped around the types of experiences users want to have, rather than wrapping user experience around a completed system.

  • Activity theory: used in HCI to define and study the context in which human interactions with computers take place. Activity theory provides a framework to reason about actions in these contexts, analytical tools with the format of checklists of items that researchers should consider, and informs design of interactions from an activity-centric perspective.[15]
  • User-centered design: user-centered design (UCD) is a modern, widely practiced design philosophy rooted in the idea that users must take center-stage in the design of any computer system. Users, designers and technical practitioners work together to articulate the wants, needs and limitations of the user and create a system that addresses these elements. Often, user-centered design projects are informed by ethnographic studies of the environments in which users will be interacting with the system. This practice is similar but not identical to participatory design, which emphasizes the possibility for end-users to contribute actively through shared design sessions and workshops.
  • Principles of user interface design: these are seven principles of user interface design that may be considered at any time during the design of a user interface in any order: tolerance, simplicity, visibility, affordance, consistency, structure and feedback.[16]
  • Value sensitive design: Value Sensitive Design (VSD) is a method for building technology that account for the values of the people who use the technology directly, as well as those who the technology affects, either directly or indirectly. VSD uses an iterative design process that involves three types of investigations: conceptual, empirical and technical. Conceptual investigations aim at understanding and articulating the various stakeholders of the technology, as well as their values and any values conflicts that might arise for these stakeholders through the use of the technology. Empirical investigations are qualitative or quantitative design research studies used to inform the designers’ understanding of the users’ values, needs, and practices. Technical investigations can involve either analysis of how people use related technologies, or the design of systems to support values identified in the conceptual and empirical investigations.[17]

Human–computer interface

Main article: User interface

The human–computer interface can be described as the point of communication between the human user and the computer. The flow of information between the human and computer is defined as the loop of interaction. The loop of interaction has several aspects to it, including:

  • Visual Based: The visual based human computer inter-action is probably the most widespread area in HCI research.
  • Audio Based: The audio based interaction between a computer and a human is another important area of in HCI systems. This area deals with information acquired by different audio signals.
  • Task environment: The conditions and goals set upon the user.
  • Machine environment: The environment that the computer is connected to, e.g. a laptop in a college student’s dorm room.
  • Areas of the interface: Non-overlapping areas involve processes of the human and computer not pertaining to their interaction. Meanwhile, the overlapping areas only concern themselves with the processes pertaining to their interaction.
  • Input flow: The flow of information that begins in the task environment, when the user has some task that requires using their computer.
  • Output: The flow of information that originates in the machine environment.
  • Feedback: Loops through the interface that evaluate, moderate, and confirm processes as they pass from the human through the interface to the computer and back.
  • Fit: This is the match between the computer design, the user and the task to optimize the human resources needed to accomplish the task.

Topics in HCI include:

User customization

End-user development studies how ordinary users could routinely tailor applications to their own needs and use this power to invent new applications based on their understanding of their own domains. With their deeper knowledge of their own knowledge domains, users could increasingly be important sources of new applications at the expense of generic systems programmers (with systems expertise but low domain expertise).

Embedded computation

Computation is passing beyond computers into every object for which uses can be found. Embedded systems make the environment alive with little computations and automated processes, from computerized cooking appliances to lighting and plumbing fixtures to window blinds to automobile braking systems to greeting cards. To some extent, this development is already taking place. The expected difference in the future is the addition of networked communications that will allow many of these embedded computations to coordinate with each other and with the user. Human interfaces to these embedded devices will in many cases be very different from those appropriate to workstations.

Augmented reality

A common staple of science fiction, augmented reality refers to the notion of layering relevant information into our vision of the world. Existing projects show real-time statistics to users performing difficult tasks, such as manufacturing. Future work might include augmenting our social interactions by providing additional information about those we converse with.

Social computing

In recent years, there has been an explosion of social science research focusing on interactions as the unit of analysis. Much of this research draws from psychology, social psychology, and sociology. For example, one study found out that people expected a computer with a man’s name to cost more than a machine with a woman’s name.[20] Other research finds that individuals perceive their interactions with computers more positively than humans, despite behaving the same way towards these machines.[21]

Knowledge-driven human-computer interaction

In human and computer interactions, there usually exists a semantic gap between human and computer’s understandings towards mutual behaviors. Ontology (information science), as a formal representation of domain-specific knowledge, can be used to address this problem, through solving the semantic ambiguities between the two parties.[22]

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Information, People, and Technology Copyright © by by Wikipedia, with help from Bart Pursel is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book