Chapter 9: Design
35 Cognitive Science & Artificial Intelligence
Cognitive science is the interdisciplinary, scientific study of the mind and its processes.[2] It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include perception, language, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as psychology, artificial intelligence, philosophy, neuroscience, linguistics, and anthropology.[3]The typical analysis of cognitive science span many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. The fundamental concept of cognitive science is that “thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures.”[3]
Artificial intelligence
Artificial intelligence (AI) is intelligence exhibited by machines. In computer science, an ideal “intelligent” machine is a flexible rational agent that perceives its environment and takes actions that maximize its chance of success at some goal.[1] Colloquially, the term “artificial intelligence” is applied when a machine mimics “cognitive” functions that humans associate with other human minds, such as “learning” and “problem solving”.[2] As machines become increasingly capable, facilities once thought to require intelligence are removed from the definition. For example, optical character recognition is no longer perceived as an exemplar of “artificial intelligence” having become a routine technology.[3] Capabilities still classified as AI include advanced Chess and Go systems and self-driving cars.
AI research is divided into subfields[4] that focus on specific problems or on specific approaches or on the use of a particular tool or towards satisfying particular applications.
The central problems (or goals) of AI research include reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects.[5] General intelligence is among the field’s long-term goals.[6] Approaches include statistical methods, computational intelligence, soft computing(e.g. machine learning), and traditional symbolic AI. Many tools are used in AI, including versions of search and mathematical optimization, logic, methods based on probability and economics. The AI field draws upon computer science, mathematics, psychology, linguistics, philosophy, neuroscience and artificial psychology.
The field was founded on the claim that human intelligence “can be so precisely described that a machine can be made to simulate it.”[7] This raises philosophical arguments about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence, issues which have been explored by myth, fiction and philosophy since antiquity.[8] Attempts to create artificial intelligence has experienced many setbacks, including the ALPAC report of 1966, the abandonment of perceptrons in 1970, the Lighthill Report of 1973 and the collapse of the Lisp machine market in 1987. In the twenty-first century AI techniques became an essential part of the technology industry, helping to solve many challenging problems in computer science.[9]