"

Chapter 6: The Importance of Data

22 Artificial Intelligence and Machine Learning

From Wikipedia: https://en.wikipedia.org/wiki/Artificial_intelligence

In computer scienceartificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans. Colloquially, the term “artificial intelligence” is often used to describe machines (or computers) that mimic “cognitive” functions that humans associate with the human mind, such as “learning” and “problem solving”.[1]

As machines become increasingly capable, tasks considered to require “intelligence” are often removed from the definition of AI, a phenomenon known as the AI effect.[2] A quip in Tesler’s Theorem says “AI is whatever hasn’t been done yet.”[3] For instance, optical character recognition is frequently excluded from things considered to be AI, having become a routine technology.[4] Modern machine capabilities generally classified as AI include successfully understanding human speech,[5] competing at the highest level in strategic game systems (such as chess and Go),[6] autonomously operating cars, intelligent routing in content delivery networks, and military simulations.

Artificial intelligence can be classified into three different types of systems: analytical, human-inspired, and humanized artificial intelligence.[7] Analytical AI has only characteristics consistent with cognitive intelligence; generating a cognitive representation of the world and using learning based on past experience to inform future decisions. Human-inspired AI has elements from cognitive and emotional intelligence; understanding human emotions, in addition to cognitive elements, and considering them in their decision making. Humanized AI shows characteristics of all types of competencies (i.e., cognitive, emotional, and social intelligence), is able to be self-conscious and is self-aware in interactions.

The field was founded on the claim that human intelligence “can be so precisely described that a machine can be made to simulate it”.[19] This raises philosophical arguments about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence which are issues that have been explored by mythfiction and philosophy since antiquity.[20] Some people also consider AI to be a danger to humanity if it progresses unabated.[21] Others believe that AI, unlike previous technological revolutions, will create a risk of mass unemployment.[22]

In the twenty-first century, AI techniques have experienced a resurgence following concurrent advances in computer power, large amounts of data, and theoretical understanding; and AI techniques have become an essential part of the technology industry, helping to solve many challenging problems in computer science, software engineering and operations research.[23][12]

Machine Learning

From Wikipedia: https://en.wikipedia.org/wiki/Machine_learning

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on sample data, known as “training data“, in order to make predictions or decisions without being explicitly programmed to perform the task.[1][2]:2 Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop a conventional algorithm for effectively performing the task.

Machine learning is closely related to computational statistics, which focuses on making predictions using computers. The study of mathematical optimization delivers methods, theory and application domains to the field of machine learning. Data mining is a field of study within machine learning, and focuses on exploratory data analysis through unsupervised learning.[3][4] In its application across business problems, machine learning is also referred to as predictive analytics.

Supervised and Unsupervised Machine Learning

Machine learning tasks are classified into several broad categories. In supervised learning, the algorithm builds a mathematical model from a set of data that contains both the inputs and the desired outputs. For example, if the task were determining whether an image contained a certain object, the training data for a supervised learning algorithm would include images with and without that object (the input), and each image would have a label (the output) designating whether it contained the object. In special cases, the input may be only partially available, or restricted to special feedback.[clarification needed] Semi-supervised learning algorithms develop mathematical models from incomplete training data, where a portion of the sample input doesn’t have labels.

Classification algorithms and regression algorithms are types of supervised learning. Classification algorithms are used when the outputs are restricted to a limited set of values. For a classification algorithm that filters emails, the input would be an incoming email, and the output would be the name of the folder in which to file the email. For an algorithm that identifies spam emails, the output would be the prediction of either “spam” or “not spam”, represented by the Boolean values true and false. Regression algorithms are named for their continuous outputs, meaning they may have any value within a range. Examples of a continuous value are the temperature, length, or price of an object.

In unsupervised learning, the algorithm builds a mathematical model from a set of data which contains only inputs and no desired output labels. Unsupervised learning algorithms are used to find structure in the data, like grouping or clustering of data points. Unsupervised learning can discover patterns in the data, and can group the inputs into categories, as in feature learningDimensionality reduction is the process of reducing the number of “features”, or inputs, in a set of data.

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Information, People, and Technology Copyright © by by Wikipedia, with help from Bart Pursel is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book